期刊文献+

一种新型广义RBF神经网络在混沌时间序列预测中的研究 被引量:32

On the prediction of chaotic time series using a new generalized radial basis function neural networks
原文传递
导出
摘要 提出了一种新颖的广义径向基函数神经网络模型,其径向基函数(RBF)的形式由生成函数确定.然后,给出了易实现的梯度学习算法,同时为了进一步提高网络的收敛速度和网络性能,又给出了基于卡尔曼滤波的动态学习算法.为了验证网络的学习性能,采用基于卡尔曼滤波算法的新型广义RBF网络预测模型对Mackey-Glass混沌时间序列和Henon映射进行了仿真.结果表明,所提出的新型广义RBF神经网络模型能快速、精确地预测混沌时间序列,是研究复杂非线性动力系统辨识和控制的一种有效方法. Radial basis function (RBF) networks have been widely used for function approximation and pattern classification as an alternative to conventional feedforward neural networks. A novel generalized RBF neural network model is presented. The form of RBF is determined by a generator function, and then an easily implementable gradient decent learning algorithm for training the new generalized RBF networks is given. Simultaneously, a fast dynamic learning algorithm based on Kalman filter is also proposed to improve the performance and accelerate the convergence speed of the new generalized RBF networks. The generalized RBF neural networks based on Kalman filtering dynamic learning algorithm is then applied to the chaotic time series prediction on the Mackey-Glass equation and the Henon map to test the validity of this proposed model. Simulation results show that the new generalized RBF networks can accurately predict chaotic time series. It provides an attractive approach to study the properties of complex nonlinear system model and chaotic time series.
作者 李军 刘君华
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第10期4569-4577,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60276037)资助的课题.~~
关键词 广义径向基函数神经网络 卡尔曼滤波 梯度下降学习算法 混沌时间序列 预测 混沌时间序列预测 RBF神经网络 广义 卡尔曼滤波算法 神经网络模型 generalized radial basis function neural networks, Kalman filter, gradient decent learning algorithm, chaotic timeseries prediction
  • 相关文献

参考文献18

  • 1Casdagli M 1989 Physica D 35 335
  • 2Ramazan G 1997 Physica D 108 119
  • 3Chen L and Chen G R 2000 IEEE Trans. Circuits and Systems I 47 1527
  • 4谭文,王耀南,周少武,刘祖润.混沌时间序列的模糊神经网络预测[J].物理学报,2003,52(4):795-801. 被引量:38
  • 5崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 6Thissen U, Brakel R, Weijer A P et al 2003 Chemometrics and Intelligent Laboratory Systems 69 35
  • 7Poggio T and Girosi F 1990 Science 247 978
  • 8Haykin S 2001 Neural Networks: A Comprehensive Foundation(New Jersey: Prentice-Hall)
  • 9Mulgrew B 1996 IEEE Signal Processing Magazine 13 50
  • 10Park J and Sandberg I W 1993 Neural Computation 5 305

二级参考文献15

  • 1顾炜,翟东辉,张立明.对复杂混沌时间序列快速预测的前馈神经网络[J].复旦学报(自然科学版),1995,34(3):262-268. 被引量:4
  • 2[1]Lin C T and Lee C S G 1991 IEEE Trans. Comput. 40 1320
  • 3[2]Uehara K and Fujise M 1991 IEEE Trans. Fuzzy Systems 1 205
  • 4[3]Kim J and Kasabov N 1999 Neural Networks 12 1301
  • 5[4]Li Z H et al 2001 Chin.Phys. 10 494
  • 6[5]Chen S H et al 2002 Chin.Phys. 11 233
  • 7[8]Zhang J S et al 2001 Acta Phys. Sin. 50 1248(in Chinese)[张家树等 2001 物理学报 50 1248]
  • 8[9]Wang L X and Mendel J M 1992 IEEE Trans. System, Man and Cybernetics 22 1414
  • 9[10]Mackey M C and Glass L 1977 Science 197 287
  • 10[11]Farmer J D 1982 Physica D 3 366

共引文献127

同被引文献364

引证文献32

二级引证文献401

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部