期刊文献+

数据挖掘中基于密度的聚类分析算法 被引量:2

下载PDF
导出
摘要 聚类在数据挖掘、模式识别等许多领域有着重要的应用。本文介绍了聚类算法的几种分类,并例举了几种基于密度的聚类算法。最后以一种新颖的基于最大不相含核心点集的聚类算法LSNCCP为例,详细介绍整个聚类算法的工作过程。
出处 《统计与决策》 CSSCI 北大核心 2005年第10X期139-141,共3页 Statistics & Decision
  • 相关文献

参考文献3

二级参考文献17

  • 1Zhang W,Proc 23rd VL DB Conf,1997年,186页
  • 2Chen M S,IEEE Trans Knowledge Data Engineering,1996年,8卷,6期,866页
  • 3Zhang T,Proc ACM SIGMOD Int Conf on Management of Data,1996年,73页
  • 4Ng R T,Proc 20th VLDB Conf,1994年,144页
  • 5M Ester, HP Kriegel, J Sander, et al. A density based algorithm for discovering clusters in large spatial databases with noise. In: E Simoudis, JW Han, UM Fayyad eds. Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226~231
  • 6S Guha, R Rastogi, K Shim. CURE: An efficient clustering algorithm for large databases. In: LM Haas, A Tiwary eds. Proc of the ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1998. 73~84
  • 7R Agrawal, J Gehrke, D Gunopolos, et al. Automatic subspace clustering of high dimensional data for data mining application. In: LM Haas, A Tiwary eds. Proc of the ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1998. 94~105
  • 8S Berchtold, C Bohm, H-P Kriegel. The pyramid-technique: Towards breaking the curse of dimensionality. In: LM Haas, A Tiwary eds. Proc of the ACM SIGMOD Int'l Conf Management of Data. New York: ACM Press, 1988. 142~153
  • 9C Yu, BC Ooi, K-L Tan, et al. Indexing the distance: An efficient method to KNN processing. In: PMG Apers, P Atzeni, S Ceri, et al eds. Proc of the 27th Int'l Conf on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann, 2001. 421~430
  • 10M Fayyad, G Piatetsky-Shapiro, P Smyth. From data mining to knowledge discovery: Anoverview. In: M Fayyad, G Piatetsky-Shapiro, P Smyth, eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1996. 1~36

共引文献131

同被引文献8

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部