2Chen M S,IEEE Trans Knowledge Data Engineering,1996年,8卷,6期,866页
3Zhang T,Proc ACM SIGMOD Int Conf on Management of Data,1996年,73页
4Ng R T,Proc 20th VLDB Conf,1994年,144页
5M Ester, HP Kriegel, J Sander, et al. A density based algorithm for discovering clusters in large spatial databases with noise. In: E Simoudis, JW Han, UM Fayyad eds. Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226~231
6S Guha, R Rastogi, K Shim. CURE: An efficient clustering algorithm for large databases. In: LM Haas, A Tiwary eds. Proc of the ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1998. 73~84
7R Agrawal, J Gehrke, D Gunopolos, et al. Automatic subspace clustering of high dimensional data for data mining application. In: LM Haas, A Tiwary eds. Proc of the ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1998. 94~105
8S Berchtold, C Bohm, H-P Kriegel. The pyramid-technique: Towards breaking the curse of dimensionality. In: LM Haas, A Tiwary eds. Proc of the ACM SIGMOD Int'l Conf Management of Data. New York: ACM Press, 1988. 142~153
9C Yu, BC Ooi, K-L Tan, et al. Indexing the distance: An efficient method to KNN processing. In: PMG Apers, P Atzeni, S Ceri, et al eds. Proc of the 27th Int'l Conf on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann, 2001. 421~430
10M Fayyad, G Piatetsky-Shapiro, P Smyth. From data mining to knowledge discovery: Anoverview. In: M Fayyad, G Piatetsky-Shapiro, P Smyth, eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1996. 1~36