期刊文献+

一类三自由度含间隙系统的分岔与混沌 被引量:17

BIFURCATION AND CHAOS OF A THREE DEGREES-OF-FREEDOM SYSTEM WITH CLEARANCE
下载PDF
导出
摘要 通过对工程中一种三自由度弹簧摇床的建模,选择一个碰撞界面作为Poincaré映射的截面,解析法和数值法相结合,证明三自由度含间隙系统通向混沌的道路不仅有典型的倍周期道路、拟周期道路和阵发性混沌,而且还存在包含Neimark-Sacker分岔的倍周期道路、包含叉式分岔的倍周期道路等复杂的混沌演化过程。对该系统分岔与混沌行为的研究,为工程实际中含间隙机械系统和冲击振动系统的优化设计提供了依据。 An important field in vibration engineering is the dynamics of mechanical systems with clearance and constraint. A three degrees-of-freedom system with a pair of symmetric set-up elastic stops is considered in this paper. The differential equation of the system motion is derived and the Poincaré map is established numerically. Bifurcations and chaos of the system are investigated by numerical simulations and analytical method. The routes from quasi-periodic, period-doubling with Neimark-Sarker bifurcation, period-doubling with pitchfork bifurcation, to chaos, are discussed, respectively. It is shown that some routes to chaos in the three degrees-of-freedom system are non-typical. It is possible to optimize the parameters of the practical system by investigation of bifurcation and chaos.
出处 《工程力学》 EI CSCD 北大核心 2005年第5期111-114,53,共5页 Engineering Mechanics
基金 国家自然科学基金资助项目(50475109)
关键词 含间隙系统 POINCARÉ映射 周期运动 分岔 混沌 system with clearance Poincaré map periodic motion bifurcation chaos
  • 相关文献

参考文献11

  • 1Knudsen J, Massih A R. Dynamic stability of weakly damped oscillators with elastic impacts and wear[J].Journal of Sound and Vibration, 2003, 263: 175-204.
  • 2Xu L, Lu M W, Cao Q J. Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise linearities by incremental harmonic balance method[J]. Journal of Sound and Vibration, 2003, 264: 873-882.
  • 3Xu L, Lu M W, Cao Q J. Nonlinear vibrations of dynamical systems with a general form of piecewise-linear viscous damping by incremental harmonic balance method[J]. Physics Letters A, 2002,301: 65-73.
  • 4Hu H Y. Detection of grazing orbits and incident bifurcations of a forced continuous piecewise-linear oscillator[J]. Journal of Sound and Vibration, 1994,187(3): 485-493.
  • 5胡海岩.分段光滑机械系统动力学的进展[J].振动工程学报,1995,8(4):331-341. 被引量:34
  • 6Whiston G S. Singularities in vibro-impact dynamics[J].Journal of Sound and Vibration, 1992, 152(3): 427-460.
  • 7Hu H Y. Controlling chaos of a periodically forced nonsmooth mechanical system[J]. Acta Mechanica Sinica, 1995, 11(3): 251-258.
  • 8Cao Q-J, Xu L, Djidjeli K. Analysis of period-doubling and chaos of a non-dymmetric oscillator with piecewise-linearity[J]. Chaos, Solitons and Fractals, 2001, 12:1917-1927.
  • 9Mahfouz I A, Badrakhan F. Chaotic behaviour of some piece-linear systems, part Ⅰ: systems with set-up spring or with unsymmetric elasticity[J]. Journal of Sound and Vibration, 1990, 143(2): 255-288.
  • 10Mahfouz I A, Badrakhan F. Chaotic behaviour of some piece-linear systems, part Ⅱ: systems with clearance[J].Journal of Sound and Vibration, 1990, 143(2): 289-328.

二级参考文献14

共引文献33

同被引文献107

引证文献17

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部