期刊文献+

基于神经网络的采场底板分类与顶板来压预报 被引量:3

FLOOR CLASSIFICATION AND ROOF WEIGHTING PREDICTION IN LONGWALL STOPE BASED ON NEURAL NETWORKS
下载PDF
导出
摘要 建立了长壁工作面底板分类及单体液压支柱底座选型的人工神经网络(BP网络)模型,并通过网络自适应学习与匹配联想,得出了采场底板类别与单体液压支柱底座型式相对应的结果。同时,通过邻城相互作用算法与BP网络耦合,预报了采煤工作面顶板来压。网络试验表明,所得结果与实际吻合良好。 Artificial neural network methods are applied to two distinct aspects of the strata control in coal mine. The first aspect is the floor classification and prop base selection by means of adaptive learning and associating in BP (Back Propagation) algorithm. The second aspect is the prediction of the likely future weighting of main roof through hybrid algorithms of the neighbourhood interaction operation and the neural networks. And the network outputs are in a close agreement with the measured data.
作者 吴洪词
出处 《贵州工学院学报》 1996年第4期32-36,共5页
关键词 神经网络 采场 底板分类 顶板来压 回采工作面 artificial neural networks longwall stope floor classification adaptive learning,neighbourhood interaction main roof weighting prediction
  • 相关文献

同被引文献5

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部