摘要
粗糙集的代数研究方法一直吸引着众多的研究人员,其中一个重要的研究方法是用算子的观点来看到粗糙集中的近似,并基于一般抽象代数结构来定义相应的粗糙近似算子。论文将分子格引入到粗糙集理论中作为基本代数系统,在分子格中构造了一个类似于闭包的子系统,并基于它们定义了更为一般和抽象的近似算子。文中还研究了相关粗近似结构的性质。
Research on rough set theory by algebraic method has attracted many researchers' attention.Regarding the lower approximation and the upper approximation as two operators,one important research method is to define the two operators based on some general algebra structures.This paper introduces molecular lattice as base algebra system on which a subsystem similar to closure is constructed.Consequently,the approximation operators are defined.Some properties of the constructed approximation structure are also studied.
出处
《计算机工程与应用》
CSCD
北大核心
2005年第30期57-59,共3页
Computer Engineering and Applications
基金
国家973重点基础研究发展规划项目(编号:2002CB312106)
浙江省科技计划项目(编号:2004C31098)
中国博士后科学基金项目(编号:2004035715)
关键词
粗糙集
近似算子
分子格
闭包
rough sets,approximation operators,molecular lattices,closure