期刊文献+

水分胁迫对植物基因表达的影响(英文) 被引量:4

Effect of Water-Deficit Stress on Plant Gene Expression
下载PDF
导出
摘要 水分胁迫会引起植物基因表达发生变化,这些变化可能导致植物从细胞水平上进行调节,并适应这种水分胁迫的环境.虽然前人从细胞水平上对水分胁迫的反映进行了大量的研究,但随着研究的不断深入,人们发现从分子水平上弄清楚植物对胁迫的反应显得更为重要.就植物细胞对水分胁迫感知、基因表达调控及ABA的合成与调控方面进行了综述. Many changes in gene expression occur in response to water-deficit stress. These changes may lead to cellular adaptation of water-deficit stress. A challenge is to determine which changes support plant adaptation to conditions of reduced soil water content and which occur in response to lesions in metabolic and cellular functions. Most work in this field has concentrated on the responses to water-deficit stress at the cellular level, but as people's understanding improves, it will be important to develop a framework to integrate the cellular responses with whole plant responses. Therefore, this paper reviewed the whole reaction of plant to the water-deficit stress on sensing cellular water deficit, genes regulated by the water-deficit stress and regulation of ABA synthesis.
出处 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期574-579,共6页 Journal of Hunan Agricultural University(Natural Sciences)
基金 湖南省自然科学基金资助项目(03JJY4034)
关键词 基因表达 水分胁迫 影响 gene expression water-deficit stress effect
  • 相关文献

参考文献39

  • 1Hanson A D, Hitz W D. Metabolic responses of mesophytes to plant water deficits[J]. Annual Review of Plant Physiology, 1982, 33. 163-203.
  • 2Paolo Pesaresi, Nora A, Gardner, et al. Cytoplasmic N-Terminal protein acetylation is required for efficient phoyosynthesis in Arabidopsis[J]. The Plant Cell, 2003,15: 1817-1832.
  • 3Yong Hwa Cheng, Kyung-Nam Kim, Girdhar K Pandey et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold response in Arsbidopisis[J]. The Plant Cell, 2003, 15 : 1847-1861.
  • 4Jennifer E, Rowland, Aginieszka M, et al. In Vivo analysis of growth hormone receptor signaling domains and their associated transcripts[J]. Molecullar and Cellular Biology, 2005, (2) : 66-77.
  • 5Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response[J]. Plant Physiology, 1999, 115: 327-334.
  • 6Rock C D. Pathways to abscisic acid-regulated gene expression[J]. New Phytologist, 2000, 148: 357-396.
  • 7Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYC homologs in drought-and ABA-regulated gene expression[J]. Plant Cell, 1997, (9):1859-1868.
  • 8Anderson B E, Ward J M, Schroeder J I. Evidence for an extracellular reception site for abscisic acid in Commelina guard cells[J]. Plant Physiology, 1994, 104:1177-1183.
  • 9Audran C, Borel C, Frey A, et al. Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia[J]. Plant Physiology , 1998, 118: 1021-1028.
  • 10Bensen R J, Boyer J S, Mullet J E. Water deficit-induced changes in abscisic acid, growth, polysomes and translatable RNA in soybean hypocotyls[J]. Plant Physiology, 1988, 88: 289-294.

同被引文献115

引证文献4

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部