期刊文献+

基于多代理的网络故障检测新方法 被引量:5

A New Network Troubleshooting Method Based on Multi-agent
下载PDF
导出
摘要 针对现有网络故障诊断系统的局限性和故障模式的不同特征,在模糊神经网络技术中引入粗糙集理论进行诊断,提出了基于Agent的分布式网络故障诊断模型。在模型中设计了一种新的算法———健壮网络故障诊断神经网络(RNFNN),利用网络的拓扑结构和权值分布实现非线性映射,从而大大改进了诊断性能。模型采用一定的状态检查策略和验证机制,保证了Agent的自身安全和通信安全。该模型与特定的系统应用环境无关,因此,提供了一个通用的网络故障诊断系统框架。实验表明,利用该方法实现的系统在进行网络故障诊断时可以取得较好的效果。 To overcome the limits of present network fault diagnosis systems and the difficulty of different fault patterns, a distributed network fault diagnosis framework based on multi-agent was proposed. In the framework, combined fuzzy neural network with rough sets theory, a new algorithm-RNFNN was presented, which greatly improves the performance of the system, with a nonlinear mapping realized by using topological structures and weights of the FNN. Also, the state-checking and authentication mechanism ensure the security of the agents and their communication. The framework is environment-independent, thus providing a general-purpose heterogeneous network fault diagnosis. The experiment result of this framework shows a good diagnostic ability.
出处 《兵工学报》 EI CAS CSCD 北大核心 2005年第5期675-680,共6页 Acta Armamentarii
基金 国家自然科学基金资助项目(60273035) 国防科工委应用基础基金资助项目(J1300D004)
关键词 通信技术 代理 故障诊断 模糊神经网络 网络性能 communication technique agent fault diagnosis fuzzy neural network network performance
  • 相关文献

参考文献10

  • 1Rachid G, Andre S. Software-based replication for fault tolerance[J]. IEEE Computer, 1997, 30(4) : 68 - 74.
  • 2徐永红 杨云 李千目 等.CQTCCA:一种新的拥塞/速率控制算法[J].南京大学学报,2002,38:198-204.
  • 3Skoundrianos E N, Tzafestas S G. Fault diagnosis via local neural networks[J]. Mathematics and Computers in Simulation , 2002,60(11) :628 - 636.
  • 4Gavalas D, Greenwood D, Ghanbari M, et al. Advanced network monitoring applications based on mobile/intelligent agent technology[J]. Computer Communications, 2002, 41(23) :720 - 730.
  • 5Bullell P, Inman D. An expert system for the analysis of faults in an electricity supply network: problems and achievements[J].Computer in Industry, 1998, 37(8) : 113 - 123.
  • 6Raghunathan R, Venkat V. A fast training neural network and its updating for incipient fault detection and diagnosis[J]. Computer and Chemical Engineering, 2000, 24(6) :431 - 437.
  • 7Lawerence H, Symeon P. Network and service anomaly detection in multi-service transaction-based electronic commerce wide area networks[C]. Siraj A. Proceedings of the 4th IEEE Symposium on Computer and Communication. Egypt: Prentice-Hall Englewood Press, 1999: 58 - 67.
  • 8Polly H, Anja F. A nonintrusive, wavelet-based approach to detecting network performance problems[C]. Prtridis V. ACM SIGCOMM Internet Measurement Workshop 2001. San Francisco: IT Forest Press, 2001:198-207.
  • 9刘凤玉,李千目,衷宜.基于贝叶斯分类的分布式网络故障诊断模型[J].南京理工大学学报,2003,27(5):546-550. 被引量:8
  • 10张文修,米据生,吴伟志.不协调目标信息系统的知识约简[J].计算机学报,2003,26(1):12-18. 被引量:190

二级参考文献10

  • 1[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991
  • 2[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59
  • 3[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998
  • 4[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164
  • 5[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316
  • 6[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120
  • 7Wooldridge M. Intelligent agents: The key concepts[ A]. Sudkamp T A. Multi-agent Systems and Applications[ C]. Virginia: Georgia Institute of Technology, 2001.3 - 43.
  • 8Brazier F M T, van Steen M, Wijngaards N J E. Distributed shared agent representations[ A].Bourne S R. International Workshop on Adaptability and Embodiment Using Multi-agent Systems[ C]. San Mateo, CA: Morgan Kanfmann Publishers Ine, 2001. 213- 220.
  • 9徐永红 杨云 李千目 等.CQTCCA:一种新的拥塞/速率控制算法[J].南京大学学报,2002,38:198-204.
  • 10刘志强.因果关系,贝叶斯网络与认知图(英文)[J].自动化学报,2001,27(4):552-556. 被引量:37

共引文献199

同被引文献50

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部