期刊文献+

一种新颖的表面空心微光阱阵列 被引量:6

A novel array of surface hollow optical micro-traps
原文传递
导出
摘要 提出了采用四台阶相位光栅与微透镜阵列组合产生一种新颖的表面空心微光阱阵列的方案,研究了表面空心微光阱阵列的光强分布,计算了相应的光学囚禁势,并讨论了该微光阱阵列在原子分子光学中的潜在应用.研究表明当用1W的YAG激光照射时,在1cm2面积上可产生近104个空心光阱,每个光阱具有较小的囚禁体积和较大的有效光强及其强度梯度,对85Rb原子的光学囚禁势可达190μK.如此深的光阱足以囚禁冷原子或冷分子,并可用于实现全光型原子或分子玻色-爱因斯坦凝聚,甚至制备新颖的光学晶格等. In this paper, we propose a new scheme to form an array of surface hollow optical micro-traps for cold atoms (or molecules) by using a phase grating with four phase steps and an array of microlens, study the intensity distribution of 2D array of surface hollow optical micro-traps, and calculate the corresponding optical potential for cold ^85Rb atoms, and discuss some potential applications of our hollow micro-trap array in atom and molecule optics. Our study shows that when our grating-lens system is illuminated by YAG laser with a power of 1W, a 2D army of surface hollow optical traps with 10^4 micro-wells will be generated in an area of 1 cm^2. Each optical trap has some novel characteristics, such as smaller trapping volume, higher effective intensity and its intensity gradient. The corresponding optical potential for trapped ^85Rb atoms can reach 190μK, which is high enough to trap cold atoms or cold molecules, and can be used to realize an all-optical atomic and molecular Bose-Einstein condensations, even to prepare novel optical lattices, and so on.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第11期5109-5115,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10174050 10374029和10434060) 江苏省教育厅高校自然科学基金(批准号:04kjb140109) 上海市重点学科以及教育部211专项基金资助的课题.~~
  • 相关文献

参考文献19

  • 1Folman R 2002 Adv. At. Mol. Opt. Phys. 48 263.
  • 2Grabouski A and Pfau T 2003 Eur Phys. J. D 22 347.
  • 3Reichel J, Hansel W, Hommclhoff Pet al 2001 Appl. Phys. B 728 1.
  • 4印建平,高伟建,刘南春,王义遒.全光学冷却与囚禁^(133)Cs原子玻色-爱因斯坦凝聚的可能性[J].物理学报,2001,50(4):660-666. 被引量:13
  • 5Birkl G, Buchkremer F B J, Dumke R et al 2001 Opt. Commun.191 67.
  • 6Dumke R, Volk M, Mther T et al 2002 Phys. Rev. Lett. 89 097903.
  • 7Yin J, Gao W, Hu Jet al 2002 O~t. Commun. 206 99.
  • 8Yin J, Gao W, Hu J et al 2002 Chin. Phys. Lett. 19 327.
  • 9Yin J 2002 Chin. Phys. 11 472.
  • 10Yin J, Gao W, Wang Y et al 2000 Chin. Phys. 9 342.

二级参考文献47

  • 1[1]Chaloupka J L, Fisher Y, Kessler T J et al 1997 Opt. Lett. 22 1021
  • 2[2]Chaloupka J L, Meyerhofer D D 2000 J. Opt. Soc. Am. B 17 713
  • 3[3]Ozeri R, Khaykovich L, Davidson N 1999 Phys. Rev. A 59 R1750
  • 4[4]Ozeri R, Khaykovich L, Friedman N et al 2000 J. Opt. Soc. Am. B 17 1113
  • 5[5]Cacciapuoti L, Angelis M, de Pierattini G et al 2001 Eur. Phys. J. D 14 373
  • 6[6]Kulin S, Aubin S, Christe S et al 2001 J. Opt. B: Quant. Semicl. Opt. 3 353
  • 7[7]Herman R M, Wiggins T A 2002 J. Opt. Soc. Am. A 19 116
  • 8[8]Yin J, Gao W, Wang H et al 2002 Chin. Phys. 11 1157
  • 9[9]Yin J, Gao W, Zhu Y 2003 Progr. Opt. 45 119
  • 10[10]Yin J, Zhu Y, Jhe W et al 1998 Phys. Rev. A 58 509

共引文献35

同被引文献63

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部