期刊文献+

矢量非傍轴离轴高斯光束的传输 被引量:5

Propagation of vectorial off-axis Gaussian beams beyond the paraxial approximation
原文传递
导出
摘要 基于矢量瑞利-索末菲衍射积分公式,得出了波动方程的一个解,它代表矢量非傍轴离轴高斯光束,其在自由空间的传输方程表示为解析的结果.矢量非傍轴离轴高斯光束的轴上和远场公式,矢量非傍轴高斯光束的传输方程,以及傍轴的结果都可作为一般表达式的特例而得出.研究表明,f参数对光束的非傍轴特性有重要影响,而离心参数也影响非傍轴行为.与共轴情况不同的是,对离轴情况,在y方向存在场的纵向分量. Based on the vectorial Rayleigh-Sommerfeld diffraction formulation, a solution of the electric-magnetic wave equation is found, which represents vectorial nonparaxial off-axis Gaussian-beams whose propagation equation in free space is expressed in a closed form. The on-axis and far-field expressions of vectorial nonparaxial off-axis Gaussian beams, the propagation equation of vectorial nonparaxial Gaussian beams and the paraxial results are treated as special cases of our general expression. It is shown that the f parameter plays an impotant role in determining the beam nonparaxiality, whereas the off-axis parameters additionally affect the nonparaxial behavior of vectorial nonparaxial off-axis Gaussian beams. Moreover, unlike the on-axis case, there exists the longitudinal component of the field in the y direction for the off-axis case.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第11期5144-5148,共5页 Acta Physica Sinica
基金 国家高技术研究发展计划(批准号:2004AA823070)资助的课题.~~
关键词 激光光学 矢量非傍轴离轴高斯光束 瑞利-索末菲衍射积分 f参数 离轴参数 非傍轴高斯光束 离轴高斯光束 传输方程 矢量 瑞利-索末菲 积分公式 一般表达式 波动方程 方程表示 laser optics, vectorial nonparaxial off-axis Gaussian beam, Rayleigh-Sommerfeld diffraction integral, f parameter, off-axis parameter
  • 相关文献

参考文献10

  • 1Lax M, Louisen W H and McKnight W B 1975 Phys. Rev. A 11 1365.
  • 2Agrawal G P and Pattanayak D N 1979 J. Opt. Soc. Am. 69 575.
  • 3Nemoto S 1990 Appl. Opt. 29 1940.
  • 4Laabs H 1998 Opt. Commun. 147 1.
  • 5刘普生,吕百达.非傍轴矢量高斯光束的圆屏衍射[J].物理学报,2004,53(11):3724-3728. 被引量:10
  • 6Duan K L and Lu B D 2004 Opt. Lett, 29 800.
  • 7Lu B D and Ma H 1999 Opt. Commun. 171 185.
  • 8张彬,马虹,吕百达.双曲正弦高斯光束的M^2因子和相干模分解[J].物理学报,1999,48(10):1869-1874. 被引量:10
  • 9Luneberg R K 1966 Mathematical Theory of Optics (Berkeley California : California University Press).
  • 10Duan K L and Lu B D 2004 Opt. & Laser Tech. 36 489.

二级参考文献17

  • 1[1]Lax M, Louisell W H and McKnight W B 1975 Phys. Rev. A 111365
  • 2[2]Agrawal G P and Lax M 1983 Phys. Rev. A 27 1693
  • 3[3]Takenaka T, Yokota M and Fukumitsu O 1985 J. Opt. Soc. Am.A 2 826
  • 4[4]Carter W H 1972 J. Opt. Soc. Am. 62 1195
  • 5[5]Agrawal G P and Pattanayak D N 1979 J. Opt. Soc. Am. 69 575
  • 6[6]Chen C G, Konkola P T, Ferrera J, Heilmann R K and Schattenburg M L 2002 J. Opt. Soc. Am. A 19 404
  • 7[7]Zeng X, Liang C and An Y 1999 Appl. Opt. 38 6253
  • 8[8]Wunsche A 1992 J. Opt. Soc. Am. A 9 765
  • 9[9]Laabs H and Friberg A T 1999 IEEE J. Quantum Electron. 35 98
  • 10[10]Seshadri S R 2002 Opt. Lett. 27 988

共引文献18

同被引文献46

  • 1刘木林,吴正茂,夏光琼.高斯光束斜入射非平行法布里珀罗干涉仪后的透射光强分布[J].光学学报,2005,25(1):109-114. 被引量:5
  • 2吕百达,季小玲,陶向阳,赵光普,肖希.硬边衍射光束的计算模拟[J].红外与激光工程,2005,34(3):301-305. 被引量:8
  • 3付文羽,刘正岐.高斯光束照射下的等倾双光束干涉[J].光子学报,2006,35(9):1400-1403. 被引量:5
  • 4Leonard Mandel,Emil Wolf.Optics Coherence and Quantum Optics [M].Cambridge:Cambridge University Press,1995.
  • 5Franco Gori.Matrix treatment for partially polarized,partially coherent beams [J].Opt.Lett.,1998,23(4):241-243.
  • 6Emil Wolf.Unified theory of coherence and polarization of random electromagnetic beams [J].Appl.Phys.Lett.,2003,312(5-6):263-267.
  • 7T.Setl,M.Kaivola,A.T.Friberg.Degree of polarization in near fields of thermal sources:effects of surface waves [J].Phys.Rev.Lett.,2002,88:123902.
  • 8T.Setl,A.T.Friberg.Complete electromagnetic coherence in the space-frequency domain [J].Opt.Lett.,2004,29(4):328-330.
  • 9Qiu Yunli,Xu Aijun,Liu Jinglin et al..Propagation of partially polarized,partially coherent beams[J].J.Opt.A:Pure.Appl.Opt.,2008,10:075004.
  • 10Duan Kailiang,Lü Baida.Partially coherent nonparaxial beams [J].Opt.Lett.,2004,29(8):800-802.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部