期刊文献+

二次筛选法中大型稀疏矩阵规模缩减算法 被引量:1

Algorithm of large sparse matrices reduction in quadratic sieve
下载PDF
导出
摘要 利用二次筛选法分解RSA的模数时,矩阵规模对算法性能有着重要的影响,缩减矩阵的规模可以有效地缩短算法的运行时间。根据二次筛选法的原理,给出了3种缩减矩阵规模的方法,结合二次筛选中的稀疏矩阵的存储结构,提出了相应的3种缩减算法。最后实现了这3种缩减算法,并在二次筛选法分解70位十进制大数程序中进行了成功的应用,给出了实验的结果。 Matrices are related to efficiency of quadratic sieve to factor RSA modulus, runtime of the algorithm can be decreased by reduction of the large sparse matrices. Three methods of reduction of the large sparse matrices are given by principles of quadratic sieve. With a sparse matrices data structure storing sparse matrices in quadratic sieve, three algorithms of matrices reduction are presented. The algorithms are implemented, It is applied in factoring 70-digits large number using quadratic sieve, and the experimental result is obtained.
作者 褚一平 陈勤
出处 《计算机工程与设计》 CSCD 北大核心 2005年第10期2624-2626,共3页 Computer Engineering and Design
基金 浙江省自然科学基金项目(ZD0101) 国防科技实验室基金项目(51436040103DZ0401) 浙江省教育厅高校科研基金项目(20030636)
关键词 RSA 二次筛选法 大型稀疏矩阵缩减 分块Lanczos算法 RSA quadratic sieve reduction of large sparse matrices block lanczos algorithm
  • 相关文献

参考文献6

  • 1Eric Landquist. The quadratic sieve factoring algorithm [DB/OL]. http:∥www. math.uiuc.edu/~landquis/quadsieve.pdf.
  • 2Brent R P, Recent progress and prospects for integer factorisation algorithms [R]. Berlin:Proc COCOON 2000, 2000.1858:3-22.
  • 3Brian Carrier, Samuel S. Implementing the hypercube quadratic sieve with two large primes[C]. Proceedings of the International Conference on Number Theory for Secure Communications,Kumbakonam, India, 2003.51-64.
  • 4Boender H. Factoring integers with large prime variations of the quadratic sieve [J], Experimental Mathematics, 1996, (5): 257-273.
  • 5Montgomery P L. A block lanczos algorithm for finding dependencies over GF (2)[J]. Springer Lecture Notes Compute Sci,Springer Verlag, 1995, 921:106-120.
  • 6Scott P Contini.Factoring integers with the self-initializing quadratic sieve[D]. M.A. Thesis, University of Georgia, 1997.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部