摘要
讨论抛物型方向在时间方向上的拟谱逼近问题,将其放到一个双线性泛函满足Necas—Babuska上确界、下确界条件的变分形式中,在理论上建立了拟谱逼近解的误差估计;最后,为了检验所给算法的有效性,给出了一个数值例子.
Chebyshev pseudospectral approximation in time for parabolic partial differential equations is discussed. This problem is set into a variational form which satisfies the inf-sup conditions of Necas-Babuska. Theoretical error estimate is establish for Chebyshev pseudospectral approximation in time. Finally, in order to verify the efficiency of the algorithm, a numerical example is given.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2005年第5期646-654,658,共10页
Journal of Natural Science of Heilongjiang University
基金
SupportedbytheNaturalScienceFoundationofChina(10371077)
关键词
Chebyshev拟谱逼近
抛物型偏微分方程
误差估计
Chebyshev pseudospectral approximation
parabolic partial differential equations
error estimate