摘要
设m是偶数,r是奇数.设Ur,Vr是适合Vr+Ur-1=(m+-1)r的整数.证明了:当a=|Vr,|b=|Ur,|c=m2+1,r≡3(mod 4),m>r/π且m是2的方幂时,方程x2+by=cz仅有正整数解(x,y,z)=(a,2,r).
Let m be an even integer, and let r be an odd integer. Let Ur, Vr be integers satisfying Vr+Ur √-1=(m+√-1)^r. It is shown that if a=│Vr│, b=│Ur│, c=m^2+1, r≡3(mod 4) and m is a power of 2 with m〉r/π, then the equation x^2+b^y=c^z has only the positive integer solution(x, y, z)=(a, 2, r).
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2005年第5期681-684,共4页
Journal of Natural Science of Heilongjiang University
基金
SupportedbytheNationalNaturalScienceFoundationofChina(10271104)
theGuangdongProvincialNaturalScienceFounda-tion(04011425)
theNaturalScienceFoundationoftheEducationDepartmentofGuangdongProvince(0161)