期刊文献+

雷电电磁脉冲对架空电力线的耦合效应 被引量:21

Coupling effects of LEMP on aerial multiconductor power lines
下载PDF
导出
摘要 从传输线模型出发,通过建立雷电回击通道、大地和电力线系统一体化模型,采用时域有限差分法计算得出雷电回击电流的近场分布,将场值代入离散的传输线方程后,计算了架空电力线终端的感应过电压.通过对多导体架空线和单导体线终端感应过电压的分析,发现由于其它导体的存在,多导体系统中单根导体两端的感应电压峰值比相同高度处单一导体两端的感应电压峰值低10%~20%;并且对于垂直导体结构,最小感应电压产生在距离地面最近的导体上;而对于水平导体结构,最小感应电压产生在中间导体上. Based on the transmission line model, this paper proposes a method that integrates the lightning return stroke channel, the earth and the overhead lines together for calculating the lightning-induced voltages on overhead lines. The finitedifference time-domain (FDTD) method is used to obtain the electromagnetic field values near a cloud-to-ground lightning return stroke channel, and then these field values are put into the discretized transmission line equations to calculate the induced voltage at the end of overhead lines. Analyses show that the induced voltage on one conductor of the multi-conductor loaded lines is affected by the presence of other lines, and the voltages induced on each of the line conductors are generally 10%-20% lower than those corresponding to a single conductor located at the same height. The minimum induced voltage is generated on the line conductor nearest to the ground for vertical configuration of the three lines, while on the middle line conductor for horizontal configration of the three lines.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2005年第10期1539-1543,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金重点资助课题(50237040) 国家自然科学基金资助课题(60471013)
关键词 雷电电磁脉冲 架空电力线 水平电场 耦合 时域有限差分法 Lightning electromagnetic pulse (LEMP) Aerial multiconductor power lines Horizontal electric field Coupling FDTD method
  • 相关文献

参考文献9

  • 1Pokharel R K, Ishii M, Baba Y. Numerical electromagnetic analysis of lightning-induced voltage over ground of finite conductivity[J]. IEEE Trans EMC, 2003, 45(1) : 651-656.
  • 2Rachidi F, Nucci C A, Ianoz M, et al. Response of multiconductor power lines to nearby lightning return stroke electromagnetic fields[J].IEEE Trans Power Delivery, 1997, 12(3) :1404-1411.
  • 3Cooray U. Calculating lightning-induced overvoltages in power lines: a comparison of two coupling models[J]. IEEE Trans EMC, 1994, 36(3),179-182.
  • 4Nucci C A, Rachidi F. Lightning-induced voltages on overhead lines[J]. IEEE Trans EMC, 1993, 35(1):75-85.
  • 5Nucci C A, Rachidi F, Ianoz M. Comparison of two coupling models for lightning-induced overvoltage calculations[J]. IEEE Trans Power Deliuery, 1993, 10(1) :330-339.
  • 6Yang C S, Zhou B H. Calculation method of electromagnetic field very close to lightning[J]. IEEE Trans EMC, 2004, 49( 1):133-141.
  • 7Taflove A. Computational eleetrodynamies: the finite-difference time-domain method[M]. Boston: Arteeh House, 1995.
  • 8Agrawal A K, Price H J, Gurbaxani S H. Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field[J]. IEEE Trans EMC, 1980, 22(2): 119-129.
  • 9Orlandi A, Paul C R. FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads[J]. IEEE Trans EMC, 1996,38(3) :388-398.

同被引文献222

引证文献21

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部