期刊文献+

制备过程中缓冲溶液对Pt-Ru/C电催化剂性能的影响 被引量:11

Influence of Buffer Solution on the Performance of Anodic Catalyst Pt-Ru/C During Preparation
下载PDF
导出
摘要 采用浸渍还原法制备了Pt-Ru/C直接甲醇燃料电池阳极催化剂.为了提高催化剂的活性,使用乙酸钠和氢氧化钠缓冲溶液来调节反应溶液的pH值,考察了缓冲溶液对催化剂性能的影响;通过XRD和TEM技术对催化剂的晶体结构及微观形貌进行了分析;并利用玻碳电极测试了催化剂在0.5 mol/L CH3OH和0.5 mol/L H2SO4混合溶液中的循环伏安曲线和阶跃电位曲线,考察了催化剂对甲醇阳极催化氧化活性的影响.结果表明,用乙酸钠和氢氧化钠缓冲溶液调节反应溶液pH值所得催化剂的性能优于用NaOH调节反应溶液pH值所得的催化剂.缓冲溶液pH值对催化剂性能有较大影响,使用pH值为12的缓冲溶液所制备的催化剂性能最佳,Pt-Ru颗粒在碳载体上分散均匀,其最小粒径为4.2 nm.还原温度对缓冲溶液作用的发挥有一定影响,还原温度升高会使溶液的pH值下降,不利于缓冲溶液作用的发挥. The Pt-Ru/C anodic catalysts for direct methanol fuel cells were prepared by the reduction method. pH values of the reductive solutions were adjusted by a buffer solution of NaOH and CH3COONa. The catalyst structure and micro-morphology were determined by X-ray diffraction and transmission electron microscopy, and the catalyst performance was examined by cyclic voltammetry and chronoamperometric curves with a glassy carbon working electrode in a solution of 0.5 mol/L CH3OH and 0.5 mol/L H2SO4. The performance of the catalyst prepared with buffer solution CH3COONa-NaOH was higher than that with NaOH solution. The best catalytic performance of the catalyst was obtained when the pH value of buffer solution was 12. Pt-Ru distributed homogeneously on carbon, and the smallest particle size was 4.2 nm. The effect of buffer solution was affected by temperature. The pH value was decreased with increasing temperature of reduction, and the catalyst activity was lowered. So the appropriate solution temperature should be kept at 80 ℃.
出处 《催化学报》 SCIE CAS CSCD 北大核心 2005年第10期923-928,共6页
基金 黑龙江省自然科学基金资助项目(B0201) 哈尔滨工业大学校基金资助项目(HIT.2001.39)
关键词 直接甲醇燃料电池 电催化剂 缓冲溶液 甲醇电氧化 direct methanol fuel cell, electrocatalyst, platinum, ruthenium, carbon, buffer solution, methanol electrooxidation
  • 相关文献

参考文献20

  • 1Wei Z D, Chan S H. J Electroanal Chem, 2004, 569(1): 23
  • 2Scott K, Taama W M, Kramer S, Argyropoulos P, Sundmacher K. Electrochim Acta, 1999, 45(6): 945
  • 3Muller J T, Urban P M, Holderich W F. J Power Sources, 1999, 84(2): 157
  • 4Chu Y H, Shul Y G, Choi W C, Woo S I, Han H S. J Power Sources, 2003, 118(1-2): 334
  • 5Dubau L, Coutanceau C, Garnier E, Leger J M, Lamy C. J Appl Electrochem, 2003, 33(5): 419
  • 6Lekhal A, Glasser B J, Khinast J G. Chem Eng Sci, 2004, 59(5): 1063
  • 7Papageorgopoulos D C, Keijzer M, de Bruijn F A. Electrochim Acta, 2002, 48(2): 197
  • 8Watanabe M, Uchida M, Motoo S. J Electroanal Chem Interfacial Electrochem, 1987, 229(1-2): 395
  • 9Chan K Y, Ding J, Ren J W, Cheng S A, Tsang K Y. J Mater Chem, 2004, 14(4): 505
  • 10Frelink T, Visscher W, Vanveen J A R. J Electroanal Chem, 1995, 382(1-2): 65

二级参考文献33

  • 1李长志,张颖,苏爱华,孙公权,杨维谦,陆天虹.质子交换膜燃料电池中氢电极和氧电极性能的研究[J].电源技术,1996,20(3):93-98. 被引量:11
  • 2周振华 周卫江 辛勤 孙公权 李文震.2001,5.
  • 3魏昭彬 刘建国 乔亚光 周卫江 李文震 陈利康 辛勤 衣宝廉(Wei Zh B Liu J G Qiao Y G Zhou W J Li W Zh Chen L K Xin Q Yi B L).电化学(Electrochemistry),2001,7(2):228-228.
  • 4Hamnett A. Catal Today, 1997, 38(4) : 445.
  • 5McNicol B D, Rand D A J, Williams K R. J Power Sources, 1999, 83(1/2): 15.
  • 6Wasmus S, Küver A. J Electroanal Chem, 1999, 461(1/2) : 14.
  • 7Arico A S, Srinivasan S, Antonucci V. Fuel Cells, 2001,2(1): 1.
  • 8Ren X M, Zelenay P, Thomas A, Davey J, Gottesfeld S. J Power Sources, 2000, 86(1/2) : 111.
  • 9Scott K, Taama W M, Argyropoulos P. J Power Sources,1999, 79(1): 43.
  • 10Trapp V, Christensen P, Hamnett A. J Chem Soc, Faraday Trans, 1996, 92(21): 4311.

共引文献67

同被引文献153

引证文献11

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部