期刊文献+

一种改进的自适应多目标SHT检测方法 被引量:1

An Improved Adaptive SHT Procedure for Multiple Radar Targets Detection
下载PDF
导出
摘要 在实际的雷达检测环境中,杂波、热噪声等产生的干扰功率通常是未知的.为此,Gini F提出了一种估计干扰功率的方法,并给出一种自适应序贯假设检验方法检测位于同一距离-方位分辨单元内的多个目标.不过,所提估计方法存在门限很难确定的问题.针对该问题,本文提出了一种新的估计干扰功率的方法,并推导出相关门限的理论值.在新估计方法基础上,给出了一种改进的自适应多目标SHT检测方法.仿真证实,改进后的自适应SHT方法具有更好的检测概率. In a realistic radar detection scenario, the disturbance power generated by thermal noise and clutter is unknown. So Gini F proposes a method of estimating the disturbance power and then presents an adaptive successive hypotheses test (SHT) procedure to detect the multiple targets in the same range-azimuth resolution cell of a radar system. However, it is hard to get the threshold for the estimation method. Aiming at the above problem, a new estimation method is put forth and the value of relative threshold is derived. An improved adaptive SHT procedure based on the new estimation method is given.The simulation results show that the improved adaptive SHT procedure has a better detection probability.
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第9期1629-1633,共5页 Acta Electronica Sinica
关键词 单脉冲雷达 多目标 干扰功率估计 序贯假设检验 monopulse radar multiple targets estimation of disturbance power successive hypotheses test
  • 相关文献

参考文献5

  • 1Sherman S M.Monopulse principles and techniques[M].Dedham,MA:Artech House,1984.
  • 2Gini F,Bordoni F,Greco M,Farina A.Multiple target detection and estimation by exploiting the amplitude modulation induced by antenna scanning PartⅡ:Detection[A].IEEE International Conference on Acoustics,Speech,and Signal Processing(VI)[C].Hong Kong:IEEE Signal Processing Socity,2003.529-532.
  • 3Gini F,Bordoni F,Greco M,Farina A.Multiple target detection and estimation by exploiting the amplitude modulation induced by antenna scanning,Part 1:Parameter Estimation[A].IEEE International Confer-ence on Acoustics,Speech,and Signal Processing(VI)[C].Hong Kong:IEEE Signal Processing Socity,2003.533-536.
  • 4Gini F,Greco M,Friana A,Gubinelli M.Asymptotic maximum likelihood estimation of multiple radar targets[A].Proceedings of the 2003 IEEE Radar Conference[C].Huntsville,AL:IEEE Aerospace and Elecronic Systems Society,2003.302-309.
  • 5Gini F,Greco M,Farina A.Multiple radar targets detection by exploiting induced amplitude modulation[J].IEEE Transaction on Signal Procession,2004,52(4):903-913.

同被引文献11

  • 1李朝伟,周希元,陈卫东,周一宇.单脉冲雷达主波束内多目标的检测方法[J].电子学报,2006,34(6):1026-1030. 被引量:12
  • 2雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 3Li H,Zhang Q. Mulfiobjective optimization problems with com- plicated Pareto sets,MOF_A/D and NSGA-II I J]. 1EEE Trans- actions on Evolutionary Computation, 2009,13(2) ,284 - 302.
  • 4Deb K, Gupta S, Daum D, Branke J, Mall A, Padmanabhan D. Reliability-based optimization using evolutionary algorithms I J]. EE Tramactiom on Evolutionary Computation, 2009, 13 (5) : 1054 - 1074.
  • 5Horn J, Nafpliotis N, Goldberg D. A niched pareto genetic al- gorithm for multiobjective optimization[ A]. Evolutionary Com- putation. IEEE, World Congress on Computational Intelligence, Proceedings of the First IEEE, Conference on [ C ]. Orlando Florida: IEEE XPLORE, 1994.82 - 8.
  • 6Kukkonen, S. & Laninen, J. GDE3: The third evolution step of generalized differential evolution[ A]. The 2005 1EF,E Congress on Evolutionary Computation[ C ]. Edinburgh: IEEE, XPLORE, 2005.1,443 - 450.
  • 7Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997,11(4) :341 - 359.
  • 8Schott J. Fault Tolerant Design Using Single and Multicritefia Genetic Algorithm Optimization [ M] .DTIC Document .Mas- sachusetts Institute of Technology: Dept. of Aeronautics and Astronaulics:Massachusetts Institute of Technology, 1995. 136 - 138.
  • 9Li M,Zheng J, Xiao G. Uniformity assessment for evolution- ary multi-objective optimization [ A ]. 2008. IEEE World Congress on Computational Intelligence[ C]. Washington, DC: 1EEE XPLORE,2008.625 - 632.
  • 10Fleiseher, M. The measure of Pareto optima applications to multi-objective metaheuristics[ A]. Second International Con- ference, Evolutionary Multi-Criterion OptimizationE C]. Faro, Portugal: Springer Berlin Heidelberg, 2003.519 - 533.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部