期刊文献+

第二类非线性Fredholm型积分方程数值解 被引量:3

Numerical Solutions of Nonlinear Fredholm Integral Equations of the Second Kind
下载PDF
导出
摘要 配置法研究了地球物理中常见的第二类非线性Fredholm型积分方程的数值解法,将第二类非线性Fredholm型积分方程转化为非线性代数方程组进行求解,采用高斯数值积分公式,给出了数值计算的具体实例。利用Matlab软件的符号运算功能编程计算,克服了非线性方程难于变成求解的困难,数值例子表明该方法编程简便有效。对非线性积分方程和非线性代数方程组的求解都有重要价值。 The collocation method is used to solve nonlinear Fredholm integral equations of the Second kind in geophysical problems. We transform nonlinear Fredholm Integral Equations into the nonlinear algebraic equations, then solve the algebraic equaitons. Numerical experiments are given with Gauss numerical integral formulas. Programming is based on the symbol function of Matlab software. This paper solves the problem of hard-programming of the nonlinear equations. Numerical experiments show the efficiency of the method. The article is valuable for solving nonlinear integral equationsand nonlinear algebraic equations.
出处 《东华理工学院学报》 2005年第3期294-296,共3页 Journal of East China Institute of Technology
基金 江西省自然科学基金(0511005) 江西省教育厅科技项目([2005]213) 东华理工学院院长基金(DHY0454)
关键词 非线性Fredholm积分方程 投影配置法 数值解 MATLAB软件 nonlinear Fredholm integral equations the collocation method numerical solutions Matlab software
  • 相关文献

参考文献5

二级参考文献19

  • 1[1]MV Klibanov and F Santosa. A computational quasi-reversibility method for Cauchy problems for Laplace equation[J]. SIAM J. Appl.1991,51(6):1653~1675.
  • 2[2]R. Lattès and J.L. Lions. The Method of Quasi-Reversibility: Applications to Partial Differential Equations[M]. Elsevier, New York, 1969.
  • 3[3]D. D. Ang, N. H. Nghia and N. C. Tam. Regularized solutions of a Cauchy Problem for Laplace Equation in irregular layer: a three-dimensional model, Acta Math[J]. Vietnam. 1998,23(1):65~74.
  • 4[4]A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-posed Problems. Winston and Sons[M], Washington, 1997.
  • 5[5]R.S.I. Falk and P.B. Monk. Logarithmic convexity for discrete harmonic functions and the approximation of the Cauchy problem for Poisson's equation[J]. Math. Comp. 1986,47(173):135~149.
  • 6[6]H. J. Reinhardt, H. Han and D. N. Hào. Stability and regularization of a discrete approximation to the Cauchy problem for Laplace's equation[J]. SIAM J. Numer. Anal. 1999,36(3):890~905.
  • 7[7]J. Cheng, Y. C. Hon, T. Wei, and M. Yamamoto. Numerical Computation of a Cauchy Problem for Laplace's Equation[J]. ZAMM Z. Angew. Math. Mech., 2001,81(10): 665~674.
  • 8[9]G.Talenti. Recovering a function from a finite number of moments[J]. Inverse Problems.1987,3(3): 501~517.
  • 9[10]T. Wei, Y. C. Hon, and J. Cheng. a Computational Method for Multi-dimensional Cauchy Problem of Laplace′s Equation[J]. SIAM Jounal on Control and Optimization, in press.
  • 10Chisholm J S R. 1963. Solution of integral equations using Padé approximants [J]. J. Math. Phys, 4(12):506 ~1510.

共引文献4

同被引文献18

  • 1阎玉斌,崔明根.第二类Volterra积分方程的准确解[J].高等学校计算数学学报,1993,15(4):291-296. 被引量:10
  • 2张忠诚.拉普拉斯变换的应用研究[J].周口师范学院学报,2006,23(2):40-42. 被引量:5
  • 3黎丽梅.拉普拉斯变换的数值逆在线性偏积分微分方程中的应用[J].湖南理工学院学报(自然科学版),2006,19(1):8-11. 被引量:2
  • 4Babolian E,Saeidian J,Azizi A,2009.Application of Homotopy Perturbation Method to Some Nonlinear Problems[J].Applied Mathematical Sciences,3(45):2215-2226.
  • 5He J H.1999.Homotopy perturbation technique[J].Computer Methods in Applied Mechanics and Engineering,178:257-262.
  • 6He J H.2000.A coupling method of a homotopy technique and a perturbation technique for nonlinear problems[J].International Journal of Non-Linear Mechanies,35:37-43.
  • 7Jaradat H,AlsayyedO,Al-Shara's.2008.Numerical Solution ofLinear ntegro-Differential Equations[J].Journal of Mathematics and Statistics,4(4):250-254.
  • 8Qarnia H E.2009.Application of homotopy perturbation method to nonhomogeneous parabolic partial and non linear differential equations[J].World Journal of Modelling and Simulation 5(3):225-231.
  • 9Rostam K,Homotopy S.2008.Perturbation Method for Solving System of Nonlinear Fredholm Integral Equations of the Second Kind[J].Journal of Applied Sciences Research,4(10):1166-1173.
  • 10沈以淡.积分方程[M]北京:北京理工大学出版社,1992.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部