摘要
研究了航天器从绕最小惯量主轴到最大惯量主轴旋转的姿态机动过程中的混沌现象。考虑到航天器内部或外部的振动部件的影响,假设两个主轴的转动惯量为时间的周期函数,同时还考虑了航天器内结构阻尼以及稀薄气体阻力的影响。应用高维的Melnikov方法,求解姿态机动过程中产生混沌的条件的解析表达式,且得到的阀值条件是扰动系统参数的函数。最后对该阀值条件进行了数值验证。
The chaotic dynamics of a spacecraft when undergoing attitude maneuver from minor axis spin to major axis spin is investigated. Considering the influence of the inside or outside vibrating attachments, we assumed that the moments of inertia about the minor and major axes are periodic functions of time. The influence of aerodynamic drag and small structural damping are also considered. The condition leading to chaotic behavior while maneuvering is formulated using higher dimensional generalization of the Melnikov' s method. This method results in an analytical criterion for heteroclinic chaos in terms of the system parameters. Then the analytical result is validated by computer numerical simulations.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2005年第5期535-540,546,共7页
Journal of Astronautics
关键词
姿态机动
混沌
MELNIKOV方法
航天器
异宿轨
Attitude maneuver
Chaotic
Melnikov's method
Spacecraft
Heteroclinic trajectories