期刊文献+

复合材料结构损伤的小波神经网络辨识研究 被引量:11

Research on Using Wavelet Neural Network to Recognize Damage in Composite Materials
下载PDF
导出
摘要 将小波神经网络应用于结构健康监测,研究实现复合材料结构常见损伤的高精度辨识。剖析了小波神经网络的收敛算法,并使用了惯性系数以抑制振荡并提出了一种自适应调整学习率的算法以加快收敛。组建结构健康监测实验系统,进行数据处理和特征提取以获得不同的结构损伤模式。提出了小波神经网络初始权值的设置方法,据此删除了小波神经网络的冗余节点。将该小波神经网络应用在实验获得的各种结构损伤模式的辨识上,验证了它的高精度和快速收敛,并成功实现了复合材料结构损伤状态的辨识仿真。 This paper applied WNN to structural health monitoring and recognized five structural statuses in composites. Using the back-propagation training algorithm, the WNN similar to RBF network performed well and for faster convergence, which set the inertia coefficient, eliminated the redundancy of the hidden layer, and can adjust learning rate self-adaptively as training progresses. This paper also presented a method to set the initialized parameters of wavelet and network before training, which was rather important to train WNN. For obtaining the different damage patterns to train and simulate the wavelet neural network, a structural health monitoring system was developed. As a primary research result on the application of wavelet neural network to structural health monitoring, a wavelet neural network architecture, converging fast and approaching for high precision, is obtained and successfully recognizes the damage patterns defined by the experimental system.
作者 彭鸽 袁慎芳
出处 《宇航学报》 EI CAS CSCD 北大核心 2005年第5期625-629,667,共6页 Journal of Astronautics
基金 国家自然科学基金(50278029)资助
关键词 小波神经网络 损伤模式 健康监测 Wavelet network neural Damage pattems Health monitoring
  • 相关文献

参考文献11

  • 1Keilers C H, Chang F-K. Identifying delaminations in composite beams using built-in piezoelectrics: Part iexperiments and analysis;Part ii an identification method [ J ]. Journal of Intelligent Material Systems and Structures, 1995, 6:649-672.
  • 2Boller C. Next generation structural health monitoring and its integration into aircraft design [ J ]. International Journal of Systems Science, 2000, 31(11): 1333-1349.
  • 3Yan L H, Yan Y J, Chang L. and Jiang J S. Identification of complex crack damage for honeycomb sandwich plate using wavelet analysis and neural networks [ J ]. Smart materials & structures,2003, 12:661-671.
  • 4Grady I Lemoine, Kevin W. Love and Todd A. Anderson. An electric potential-based structural health monitoring technology using neural network [ A]. In: Fu-Kuo Chang. Proceedings of the 4th International workshop on structural health monitoring[ C]. Stanford,CA, USA: DEStech Publications, 2003, 387- 395.
  • 5Yagawa G, Matsuda A, Kawate H, Yoshimura S. Neural network appoach to estimate stable crack gsowth in welded speciments [ J ].Intemtional Journal of Pressure Vessels and Piping, 1995,63:303-318.
  • 6Chung-Bang Yun and Eun Young Bahng. Substructrual identification using neural networks[J]. Computers & Structures, 2000,77:41 -521.
  • 7Qinghua Zhang and Albert Benveniste. Wavelet networks[J]. IEEE Trans. on Neural Networks, 1992, 3(6): 889-898.
  • 8Zhang Jun, Gilbert G Walter, Yubo Miao and Wan Ngai Wayne Lee.Wavelet neural networks for function learning[ J ]. IEEE Trans on Signal Processing, 1995,43(6): 1485 - 1497.
  • 9CJA Tollig and AJ Hoffman. Wavelet neural network for classification of transient signals[J]. IEEE, 1997:161 - 166.
  • 10王磊,袁慎芳,朱安华.基于主动监测技术的蜂窝夹芯结构损伤监测研究[J].仪器仪表学报,2002,23(4):404-407. 被引量:5

二级参考文献3

共引文献4

同被引文献107

引证文献11

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部