期刊文献+

基于混沌理论的上海股市非线性动力学研究 被引量:4

Research on Non-Linear Dynamics Characters of Shanghai Stock Market Based on Chaos Theory
原文传递
导出
摘要 介绍了资本市场的非线性动力学方法,使用重构相空间技术重构了上海股市的相空间,描述了其二、三维演化趋势图,并分别计算了关联维数,得到了它的饱和嵌入维数,说明上海股市是具有分数维结构的低自由度混沌系统,计算了最大Lyapunov指数。通过计算表明,上海股市是混沌系统,进一步解释了上海股市非线性复杂性形成的机理。 This paper firstly introduces non-linear dynamics model of the capital market. Then, we reconfigure the phase space of Shanghai stock market by using reconfiguration phase space technology, and picture its 2-dimension and 3-dimension trend charts. We also calculate the correlation dimension of Shanghai stock market, and find its saturated embed dimension that demonstrates that Shanghai stock market is a low-freedom chaos systems which has a fractional dimension structure. Finally, we calculate Lyapunov exponent of Shanghai stock market, and find its value is greater than zero, which demonstrates that Shanghai stock market is a chaos system that further interprets mechanics of forming non-linear complexities of Shanghai stock market.
出处 《系统工程理论方法应用》 北大核心 2005年第5期390-394,共5页 Systems Engineering Theory·Methodology·Applications
关键词 资本市场理论 混沌理论 重构相空间 关联维数 LYAPUNOV指数 capital market theory chaos theory reconfiguration phase space technology correlation dimension Lyapunov exponent
  • 相关文献

参考文献8

  • 1Skjeltorp J A.Scaling in the Norwegian stock market[J].Physica A,2000,283:486—528.
  • 2Opong K K,Mulholland G,Fox A F,et al.The behavior of some UK equity indices:An application of Hurst and BDS test[J].Journal of Empirical Finance,1999,6:267—282.
  • 3Andreadis I.Self—criticality and stochasticity of an S&P 500 index time series[J].Chaos,Solitons and Fractal,2000,11:1047—1059.
  • 4Takens F.Detecting strange attractors in turbulence[J].Lecture Notes in Mathematics,1980,898:366—381.
  • 5Cao L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physkca D, 1997, 110:43-50.
  • 6Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physics D, 1983, 9:189-208.
  • 7Wolf A. Determining Lyapunov exponents from a time series[J]. Physics D, 1985, 16: 285-317.
  • 8Peters E. Chaos and order in the capital market[M].New York: John Wiley&Sons, 1991.

同被引文献36

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部