期刊文献+

基于分数阶微积分的模糊分数阶控制器研究 被引量:17

Fuzzy Fractional Order Controller Based on Fractional Calculus
下载PDF
导出
摘要 在分析分数阶微积分的基础上,提出了一种新型模糊分数阶比例积分微分控制器.分数阶微积分将传统控制器中的积分和微分的阶数扩展到任意实数,为控制器的设计提供了比传统整数阶更好的性能扩展.结合分数阶比例积分微分控制器和模糊控制逻辑,用分数阶比例积分微分单元代替传统的模糊比例积分微分控制器中的比例积分微分单元,构建了模糊分数阶比例积分微分控制器的结构,采用模糊逻辑推理和Tus-tin离散方法实现了模糊分数阶比例积分微分控制器的计算.最后,用数字仿真方法和不同条件下的对比分析验证了新型模糊分数阶比例积分微分控制器的优良控制特性.研究结果表明,设计的新型模糊分数阶比例积分微分控制器对非线性和参数不确定性具有较强的鲁棒性. A novel fuzzy fractional order proportional integral derivative (FFPID) controller based on fractional calculus is presented. Fractional calculus performs more effectively for the controller design than integer order calculus with arbitrary integral and derivative orders of real number. Combined the fractional proportional integral derivative controller with fuzzy control logic, the unit of fractional proportional integral derivative replaces the unit of proportional integral derivative in conventional fuzzy PID controllers to establish the structure of FFPID. The operational process of FFPID controllers is realized with the method of Tustin discretization and fuzzy logic reasoning. To demonstrate better control characteristics of the FFPID controllers, a numerical simulation with a detailed comparative analysis under individual conditions is carried out. The results verify the fine robust performance for the nonlinearity and parameter uncertainty.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第11期1246-1249,1253,共5页 Journal of Xi'an Jiaotong University
关键词 分数阶控制器 模糊比例积分微分控制器 分数阶微积分 fractional order controller fuzzy proportional integral derivative controller fractional calculus
  • 相关文献

参考文献10

  • 1Petras I, Dorcak L, Kostial I. Control quality enhancement by fractional order controllers [J]. Acta Montanistica Slovaca, 1998, 3(2):143-148.
  • 2Ma C B, Hori Y. Backlash vibration suppression in torsional system based on the fractional order Q-filter of disturbance observer [A]. Proceedings of the 8th IEEE International Workshop on Advanced Motion Control [C]. Piscataway, Japan: IEEE Press, 2004. 577-582.
  • 3Ferreira N M F, Machado J A T. Fractional-order hybrid control of robotic manipulators[A]. Proceedings of the 11th International Conference on Advanced Robotics [C]. Piscataway, Japan: IEEE Press, 2003.393-398.
  • 4Petras I, Vinagre B M. Practical application of digital fractional-order controller to temperature control [J]. Acta Montanistica Slovaca, 2002,7(2): 131-137.
  • 5晏蔚光,李果,余达太,杨宇.基于模糊PID控制的汽车防抱制动系统控制算法研究[J].公路交通科技,2004,21(7):123-126. 被引量:24
  • 6Malki H A, Misir D, Feigenspan D, et al. Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads [J]. IEEE Transactions on Control Systems Technology, 1997, 5(3): 371-378.
  • 7Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation [J]. Fractional Calculus and Applied Analysis,2002,5(4): 367-386.
  • 8Chen Y Q, Moore K L. Discretization schemes for fractional-order differentiators and integrators [J]. IEEE Transactions on Circuits and Systems, 2002,49(3):363-367.
  • 9Podlubny I. Fractional-order systems and PIλDδ controllers [J]. IEEE Transactions on Automatic Control, 1999, 44(1): 208-213.
  • 10Huang T T, Chung H Y, Lin J J. A fuzzy PID controller being like parameter varying PID [A]. Proceedings of the 1999 IEEE International Fuzzy Systems Conference [C]. Piscataway, Japan: IEEE Press, 1999. 269-276.

二级参考文献4

  • 1[4]Anthony B Will,Stanislaw H Zak.Antilock Brake System Modeling and Fuzzy Control[J].Vehicle Design,2000,24(1).
  • 2[5]S G Kong,B Kosko.Adaptive Fuzzy Systems for Backing up a Truck-and-Trailer.IEEE Trans.On Neural Networks[C].1992,3(2):211-223.
  • 3余志生.汽车理论[M].北京:机械工业出版社,2001..
  • 4郭孔辉,王会义.模糊控制方法在汽车防抱制动系统中的应用[J].汽车技术,2000(3):7-10. 被引量:33

共引文献23

同被引文献194

引证文献17

二级引证文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部