期刊文献+

Cu^+和Ag^+叠氮盐晶体的周期性ab initio计算 被引量:4

Periodic Ab initio Calculations on Ag^+ and Cu^+ Azides
下载PDF
导出
摘要 The energy bands,electronic structures of CuN3 and AgN3 crystallines were investigated by periodic ab initio method.The charge density projection shows that there are overlaps of isodensities between the terminal nitrogen and metallic ion,indicating that the metals and the azides are combined by covalent bonds.The crystal lattice energies are-781.05 and-840.83 kJ/mol for CuN3 and AgN3 respectively.These results approach the data obtained by Gray′s approximate method.The frontier crystal orbital mainly consists of the atomic orbital of azide′s terminal nitrogen.The energy gap for AgN3 is smaller than that of CuN3,and the highest occupied crystal orbitals of AgN-3 consist of both the atomic orbitals of the terminal nitrogen in azide and the silver ion,which facilitates the electron to leap from terminal nitrogen in azide to metallic ion directly.Hence silver azide is slightly more sensitive than copper azide.The elastic coefficients C11,C22 and C33 of CuN3 are predicted to be 96.52,96.86 and 154.06 GPa,C11 and C22 of AgN3 are 303.29 and 138.80 GPa. The energy bands, electronic structures of CuN3 and AgN3 crystallines were investigated by periodic ab initio method. The charge density projection shows that there are overlaps of isodensities between the terminal nitrogen and metallic ion, indicating that the metals and the azides are combined by covalent bonds. The crystal lattice energies are -781.05 and -840. 83 kJ/mol for CuN3 and AgN3 respectively. These results approach the data obtained by Gray's approximate method. The frontier crystal orbital mainly consists of the atomic orbital of azide's terminal nitrogen. The energy gap for AgN3 is smaller than that of CuN3, and the highest occupied crystal orbitals of AgN3 consist of both the atomic orbitals of the terminal nitrogen in azide and the silver ion, which facilitates the electron to leap from terminal nitrogen in azide to metallic ion directly. Hence silver azide is slightly more sensitive than copper azide. The elastic coefficients Cll, C22 and C33 of CuN3 are predicted to be 96.52, 96.86 and 154. 06 GPa, Cll and C22 of AgN3 are 303.29 and 138.80 GPa.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2005年第11期2125-2127,共3页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20173028) 火炸药青年创新基金(批准号:42001060102)资助
关键词 CuN3和AgN3晶体 Ab INITIO 能带结构 电子结构 感度 弹性系数 AgN3 and CuN3 crystalline Ab initio Energy band structure Electronic structure Sensitivity Elastic coefficients
  • 相关文献

参考文献15

  • 1Fair H. D, Walker R. F. Energetic Materials 1, Physics and Chemistry of the Inorganic Azides[M]. New York and London : Plenum Press. 1977.
  • 2Dias H. V. R, Goh S. K, Archibong E. F. et al. Inorg. Chem. [J]. 2000, 39:3894-3901.
  • 3Aduev B. P, Aluker E. D, Belokurov G. M. et al. Combust. Explos. Shock Waves[J]. 2002, 38:378-380.
  • 4Aduev B. P, Aluker E. D, Krechetov A. G. et al. Combust. Explos, Shock Waves[J]. 2003, 39:581-584.
  • 5Zeng X. Q, Liu F. Y, Sun Q, et al. Inorg. Chem. [J]. 2004, 43:4799-4801.
  • 6Xiao H. M, Li Y. F. Science in China, Series B[J]. 1995, 38:538-545.
  • 7肖鹤鸣,李永富,钱建军.碱金属和重金属叠氮化物的感度和导电性研究[J].物理化学学报,1994,10(3):235-240. 被引量:19
  • 8Saunders V. R, Dovesi R, Roetti C. et al. Crystai 98[CP]. University of Torino, Torino, Italy, 1998.
  • 9Towler M. D, Dovesi R, Saunders V. R. Phys. Rev. B[J]. 1995, 52:10150-10159.
  • 10Apra E, Stefanovich E, Dovesi R. et al. Chem. Phys. Lett. [J]. 1991, 186:329-335.

二级参考文献5

  • 1李永富,博士学位论文,1991年
  • 2李永富,1989年
  • 3徐佳,化学通报,1986年,3期,46页
  • 4肖慎修,量子化学中的离散变分Xa方法及计算程序,1986年
  • 5孙荣康,火炸药的化学与工艺学.1,1976年

共引文献18

同被引文献57

  • 1Xuehai Ju,Heming Xiao,Guangfu Ji.Periodic DFT approaches to crystalline alkali metal azides[J].Chinese Science Bulletin,2002,47(14):1180-1183. 被引量:1
  • 2肖鹤鸣,李永富,钱建军.碱金属和重金属叠氮化物的感度和导电性研究[J].物理化学学报,1994,10(3):235-240. 被引量:19
  • 3陈红艳,张同来,张建国,郁开北.水合三硝基间苯三酚的制备、结构及热分解机理[J].火工品,2005(2):13-17. 被引量:9
  • 4Harris, B. W. DE 85014259, 1985 [Chem. Abstr. 1985, 105, 175328].
  • 5Holloway, K. J.; Thomas, A. T.; Williams, R, J. CA1315805, 1993 [Chem. Abstr. 1993, 120, 168172].
  • 6Egorshev, V. Y.; Sinditskii, V. P.; Zbarsky, V. L.; Zbarsky, V. L.; Yang, Z. C.; Liu, W. F. In Theory and Practice of Energetic Materials, Vol. 5, Eds.: Huang, P.; Li, S. C.; Wang, Y. J., Science Press, Beijing/New York, 2003, pp. 30-37.
  • 7Chen, H. Y.; Zhang, T. L.; Zhang, J. G.; Qiao, X. J.; Yu, K. B. J. Hazard. Mater. 2006, 129, 31.
  • 8Chen, H. Y.; Zhang, T. L.; Zhang, J. G.; Yang, L.; Qiao, X. J. Chin. J. Chem. 2007, 25, 59.
  • 9Wang, L. Q.; Chen, H. Y.; Zhang, T. L.; Zhang, J. G.; Yang, L. J. Hazard. Mater. 2007, 147, 576.
  • 10Chen, H. Y.; Zhang, T. L.; Qiao, X. J., Yang, L.; Zhang, J. G.; Yu, K. B. Chin, J. Inorgese Chem. 2006, 22, 1852.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部