期刊文献+

频繁项集挖掘算法研究 被引量:2

Research on Frequent Item Sets Mining Algorithms
下载PDF
导出
摘要 在数据库中挖掘频繁项集是数据挖掘领域的最基本、最重要的问题。自从Agrawal的开创性工作以来,有关研究从未停止过。然而由于其内在的计算复杂性,这一问题并未完全解决。通过描述频繁项集挖掘的特点,并根据解空间的分类对已有各种频繁项集、闭频繁项集、最大闭频项集和不生成频繁项集的挖掘算法进行了分析和比较。
出处 《情报杂志》 CSSCI 北大核心 2005年第11期2-3,7,共3页 Journal of Intelligence
基金 国家自然科学基金资助项目(编号:50274043)
  • 相关文献

参考文献14

  • 1Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Database. In:Proc. 1993 ACM - SIGMOD Intl. Conf. Management of Data, Washington, D.C, May 1993.
  • 2Toivonen H. Sampling Large Databases for Association Rules. In: Proc. 1996Intl. Conf. Very large DataBases (VLDB'96), Bombay, India, Sept. 1996.
  • 3Savasere A, Omiecinsky E, Navathe S. An Efficient Algorithm for Mining Association Rules in Large Databases. In: 21st Intl. Conf. On Very Large Databases (VLDB), Zurich, Switzerland, Sept. 1995.
  • 4Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules. In;VLDB' 94, Santiago, chile, Sept. 1994. 487 - 499.
  • 5Park J S,Chen M S, Yu P S. An Effective Hash Based Algorithm for Mining Association Rules. In: Proc. 1995 ACM-SIGMOD, San Jose, CA, Feb. 1995.
  • 6Brin S, et al. Dynamic Item Sets Counting and Implication Rules for Market Basket Analysis. In SIGMOD'97,Tucson, AZ, May 1997.
  • 7Han J. Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation.In SIGMOD'2000, Dallas, TX, May 2000.
  • 8何炎祥,向剑文,朱骁峰,孔维强.不产生候选的快速投影频繁模式树挖掘算法[J].计算机科学,2002,29(11):71-75. 被引量:11
  • 9范明,王秉政.一种直接在Trans-树中挖掘频繁模式的新算法[J].计算机科学,2003,30(8):117-120. 被引量:10
  • 10Pasquier N, Bastide Y, Taouil R, Lakhal L. Discovering Frequent Closed Item Sets for Association Rules. In ICD' 99, Jerusalem, Israel, Jan. 1999.

二级参考文献24

  • 1Agrawal R, Srikant R. Fast algorithms for Mining association rules. In:Proc 1994 Int'l Conf on Very Large Data Bases,Sept.1994- 487-499.
  • 2Park J S,Chen M S. Yu P S. An effective hash-based algorithm for mining association rules. In: Proc 1995 ACM-SIGMOD Int'l Conf on Management of Data, May 1995. 175-186.
  • 3Brin S,Motwani R ,Silverstein C. Beyond market basket: Generalizing association rules to correlations. In: Proc 1997 ACM-SIGMOD Int'l Conf on Management of Data, May 1997. 265-276.
  • 4Agrawal R,Srikant R. Mining sequential patterns, In ICDE'95, pages 3-14.
  • 5Dong G, Li J. Efficient mining of emerging patterns : Discovering trends and differences. In: Proc of the fifth ACM SIGKDD Intl Conf on Knowledge Discovery and Data Mining, Aug.1999. 43-52.
  • 6Han J, Pel J, Yin Y. Mining frequent patterns without candidate generation. In:Proc 2000 ACM-SIGMOD Intl Conf on Managernent of Data, May 2000. 1-12.
  • 7Bykowski A,Rigotti C. A Condensed Representation to Find Frequent Patterns. In:Proc of the 20th ACM SIGACT-SIGMODSIGART Symposium on Principles of Database Systems (PODS 2001) ,Santa Barbara,CA,USA,ACM Press ,2001. 267-273.
  • 8.[EB/OL].http://www. ics. uci. edu/-mlearn/MLRepository. html,.
  • 9HartJiawei KamberM著 范明 孟小峰译.效据挖掘:概念与技术[M].机械工业出版社,2001.149-184.
  • 10Hah J, Pei J, Yin Y. Mining partial periodicity using frequent pattern trees: [CS Tech. Rep. 99-10]. Simon Fraser University, July 1999

共引文献19

同被引文献8

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部