期刊文献+

基于对数无限可分级串框架Web网络流量分析

Web Traffic Analysis Based on Log-Infinitely Divisible Cascades
下载PDF
导出
摘要 由于Web流量占据了网络流量的主要成分,它的尺度特性必然对整体流量特性产生一定的影响。而对数无限可分级串框架能描述数据流全范围下的多尺度行为,因此可在该框架下分析Web流量与TCP流量的多尺度行为。通过几个对比实验,发现Web流量并不一定就决定了TCP流量的尺度特性,异质的非Web流量的尺度分段交接点大于同质的Web流量的交接点。而且在相近的时间内,Web流量的尺度特性不受一些异常流量的影响,是相对稳定的。 Web traffic,which predominates in network traffic,should have effects on the scaling properties of whole traffic.The log-infinitely divisible cascades method in scale analysis of turbulence could describe the multi-scaling behavior of data in full range,which we used to study the scaling properties of web traffic and TCP traffic.Based on several designed experiments,it is leant that web traffic could not definitely decide the scaling properties of TCP traffic,and the scaling joint of non-web traffic which is heterogeneous in protocols is larger than that of homogeneous web traffic.The scaling properties of web traffic are relatively steady,which could not be influenced by abnormal traffics.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第31期112-115,143,共5页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60373075) 教育部科学技术研究重点项目(编号:01077) 教育部优秀青年教师资助计划
关键词 对数无限可分级串 扩展自相似性 尺度 WEB流量 log-infinitely divisible cascades, extended self-similarity, scale, Web traffic
  • 相关文献

参考文献8

  • 1程华,邵志清,房一泉.Internet流量的多重分形分析[J].通信学报,2005,26(B01):27-30. 被引量:3
  • 2A Arneodo,J F Muzy,S G Roux. Experimental Analysis of Self-Similarity and Random Cascade Processes:Application of Fully Developed Turbulence Data[J].J Phys Ⅱ France 7,1997:363~370.
  • 3A Arneodo,E Bacry,J F Muzy. Random Cascades on Wavelet Dyadic Trees[J].Journal of Mathematical Physics, 1998;39(8).
  • 4P Chainais ,P Abry,J Pinton.Intermittency and Coherent Structures in a Swirling Flow:A Wavelet Analysis of Joint Pressure and VelocityMeasurements[J].Physics of Fluids, 1999; 11 ( 11 ): 3524~3539.
  • 5W Feller. An Introduction to Probability Theory and its Applications[M].Volume Ⅱ,John Wiley&Sons,Inc,1970.
  • 6D Veitch,P Abry,P Flandrin et al. Infinitely Divisible Cascade Analysis of Network Traffic Data[C].In:Proc of ICASSP 2000 conference,2000.
  • 7S Roux,D Veitch,P Abry et al.Statistical Scaling Analysis of TCP/ IP Data Using Cascades[C].In:Proc of the Int Conf on Acoust Speech and Sig Proc,Salt-Lake City,USA,2001.
  • 8H Cheng, Y Fang,J Huang et al. Multifract analysis of Abnormal Network Traffic[C].In:the 2nd Network Research Workshop,the 18thAsia Pacific Advanced Network,Cairns,Australia,2004-07.

二级参考文献4

  • 1CHENG H, FANG Y Q, HUANG J, SHAO Z. Multifract analysis of abnormal network traffic[A]. The 2nd Network Research Workshop[C]. Australia, 2004.
  • 2VERES A, BODA M. The chaotic nature of TCP congestin control[A]. Proc IEEE INFOCOM2000[C]. 2000. 1715-1723.
  • 3CHAINAIS P, ABRY P, PINTON J. Intermittency and coherent structures in a swirling flow: a wavelet analysis of joint pressure and velocity measurements[J]. Physics of Fluids, 1999, 11(11):3524-3539.
  • 4CARBONE V, VELTRI P, BRUNO R. Solar wind low-frequency magnetohydrodynamic turbulence: extended self-similarity and scaling laws[J]. Nonlinear Processes in Geophysics, 1996, 3(4):247-261.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部