期刊文献+

随机桁架结构可靠性分析的完全概率方法 被引量:2

Analysis of reliability of stochastic truss structure based on full-probability
下载PDF
导出
摘要 提出了一种求解随机参数桁架结构在随机荷载作用下反应的概率密度函数和结构精确可靠度的方法。通过对随机参数桁架结构在随机荷载作用下的有限元分析方法的研究,考虑了结构的物理参数,构件的几何尺寸和作用荷载幅值等的随机性。应用随机向量函数的概率分布函数表达式,通过确定积分区间、变量替换、交换积分顺序等一系列数学上的处理,获得所求结构反应的概率密度函数。由干涉理论得到了结构位移和应力的可靠度。通过算例的结果与Monte-Car-lo模拟法结果比较,表明该方法具有较高的精度及良好的实用性。 The present paper aims to propose a new method for analyzing statics and reliability of the stochastic truss structural response under random loading based on the analysis of full-probability. As is known, it is necessary to take into full account all the stochastic factors of the structural physical parameters along with the geometrical dimensions and the stochastic loads applied on such structure in the study of the truss structural response analysis. The probability density function for the stochastic truss structural responses can only be obtained by determining the limits of integration as well as substitution of the variables, Then a precise reliability analysis for the displacement and stress has been done. In the end of the paper, two examples are to be illustrated to explain the present method. A comparison of its results gained by the new method with the results given by the Monte-Carlo method shows that the proposed method is of high accuracy and feasibility, regardless of the different distribution types. Therefore, it can be pointed out that: (1) when the physical parameters and the loading are all in normal random variables, the structural responses obtained by our method will be a normal variable too. However, if the physical parameters and the loading are not in normal random variables, the structural responses obtained shall never be any more normal again. In this case, the mean and the variance of the responses can not characterize the probability distribution for the responses, and we can not get accurate structural reliability by using the First Order Square method or Hasofer-Lind method or Rackwitz-Fiesser method. It is necessary to do more accurate calculation so as to get an accurate structural reliability. (2) Our method is only directed against reliability of a node or an element in the structure, therefore, the method based on full-probability for calculating the whole structure reliability is worth further study.
出处 《安全与环境学报》 CAS CSCD 2005年第5期35-38,共4页 Journal of Safety and Environment
基金 陕西省自然基金项目(2002A14) 国防预研基金项目(51421060505DZ0155)
关键词 工程力学 随机桁架结构 概率密度 结构有限元分析 随机向量函数 可靠性分析 engineering mechanics, stochastic truss structure probability density structural finite element analysis function of random vector reliability analysis
  • 相关文献

参考文献10

二级参考文献24

  • 1李杰.随机结构分析的扩阶系统方法(Ⅰ)——扩阶系统方程[J].地震工程与工程振动,1995,15(3):111-118. 被引量:12
  • 2刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展,1995,25(1):114-126. 被引量:104
  • 3胡健伟 汤怀民.微分方程数值方法[M].北京:科学出版社,2000.165-240.
  • 4Zhu W Q,J Engng Mech ASCE,1992年,118卷,3期,496页
  • 5Hamburger R O. A Framework for Performance-Based Earthquake Resistive Design [P]. the EERC-CUREE Symposium in Honor of Vitelmo V. Bertero,1997,(Berkeley, California).
  • 6Ghanem R, Spanos P D. Stochastic Finite Element: A Spectral Approach[M]. Berlin: Springer-Verlag, 1991.
  • 7Li J, Chen J B. Probability density evolution methodfor dynamic response analysis of stochastic struc-tures[A]. Proceedings of the Fifth International Conference on Stochastic Structural Dynamics[C]. SSD03, Hangzhou, China. Boca Raton, CRC Preis,2003,309-
  • 8Syski R. Stochastic Differential Equations[A]. Modern Nonlinear Equations[M]. New York: McGraw-Hill, Inc, 1967.
  • 9Soong T T. Random Differential Equations in Scie-nce and Engineering[M]. New York and London: Academic Press, 1973.
  • 10Thomas J W. Numerical Partial Differential Equa-tions Finite Difference Methods[M]. New York: Springer-Verlag New York Inc., 1995.

共引文献56

同被引文献32

  • 1魏炜,董丁明.锚具变形产生的预应力损失计算[J].建筑科学与工程学报,2007,24(4):86-90. 被引量:10
  • 2唐义军,李耀庄,蒋春艳.多因素机制作用下在役钢筋混凝土结构构件的可靠度分析[J].防灾减灾工程学报,2005,25(2):135-139. 被引量:2
  • 3GUO T, SAUSE R, FRANGOPOL D M, et al. Time-dependent reliability of PSC box-girder bridge considering creep, shrinkage, and corrosion[J]. Journal of Bridge Engineering, 2011, 16(1): 29-43.
  • 4STEINBERG E P. Probabillistic assessment of prestress loss in pretensioned prestressed concrete[J]. PCI Journal, 1995, 40(6): 76-84.
  • 5JTG D62-2004 Code for design of highway reinforced concrete and prestressed concrete bridges and culverts(公路钢筋混凝土及预应力混凝土桥涵设计规范)[S].
  • 6MIRZA S A, KIKUCHI D K, MACGREGOR J G. Flexural strength reduction factor for bonded prestressed concrete beams[J]. ACI Journal, 1980, 77(4): 237-245.
  • 7AI-HARTHY A S, FRANGOPO D M. Reliability assessment of prestressed concrete beams[J]. Journal of Structural Engineering, 1994, 120(1): 180 199.
  • 8DU Bin(杜斌). Research on reliability and remaining service life of existing prestressed concrete bridge(既有预应力混凝土桥梁可靠度与寿命预测研究). Chengdu: Southwest Jiaotong University, 2010.
  • 9LI Yanghai(李扬海), BAO Weigang(鲍卫刚), GUO Xiuwu(郭修武), et al. Highway bridge structure reliability and probability limit state design(公路桥梁结构可靠度与概率极限状态设计)[M]. Beijing: China Communications Press, 1997.
  • 10ENGELUND S,RACKWITZ R. A benchmark study on importance sampling techniques in structural reliability[J].Structural Safety,1993,(4):255-276.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部