期刊文献+

强耦合捕食模型正解的存在性 被引量:1

Existence of positive solutions for a strongly coupled prey-predator model
下载PDF
导出
摘要 讨论了齐次Dirichlet边界条件下一类带有Holling-Ⅱ响应函数的强耦合捕食模型。借助于先验估计和分歧理论,得到正确的存在性与非存在性。 A strongly coupled predator-prey model with Holling-Type Ⅱ schemes subject to homogeneous Dirichlet boundary conditions is elabrated. The existence and nonexistence of positive solutions are established by using prior estimates and bifurcation theory.
作者 陈滨 孙福芹
出处 《天津工程师范学院学报》 2005年第3期5-8,共4页 Journal of Tianji University of Technology and Education
基金 国家自然科学基金资助项目(10471022)教育部科技重点资助项目(104090).
关键词 正解 强耦合捕食模型 分歧 positive solutions a strongly coupled prey-predator model bifurcation
  • 相关文献

参考文献6

  • 1Blat J, Brown K J. Global bifurcation on positives in some systems of elliptic equations [ J ]. SIAM Joural Analysis and Applications, 1986,17:1 339-1 353.
  • 2Chen B, Peng R. Coexistence states of a strongly coupled prey-predator model [ J ]. Joural of Partical Differential Equations, 2005,18:154-166.
  • 3Grandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues [ J ]. Journal of Functional Analysis, 1971, 8: 321-340.
  • 4Du Y H, Lou Y. Some uniqueness and exact multiplity resuits of a predator-prey model[ J ]. Transactions of the Americal Mathematical Society, 1997,349:2 443-2 475.
  • 5Rabinowitz P H. Some global results for nonlinear eigenvalue problems[ J]. Journal of Functional Analysis, 1971,7:487-513.
  • 6Wang M X. Stationary patterns of strongly coupled preypredator models [ J ]. Journal of Mathematical Analysis and Applications, 2004,292:484-605.

同被引文献8

  • 1何丽红,郑晓静.风-沙-电多场耦合模型及其对风沙流结构的影响[J].兰州大学学报(自然科学版),2005,41(3):87-92. 被引量:8
  • 2法焕霞,陈文彦.一个强耦合的捕食模型(英文)[J].徐州师范大学学报(自然科学版),2005,23(3):29-34. 被引量:1
  • 3KEFI S, MAX R, ALADOS C L, et al. Spatial vegetation patterns and imminent desertification in mediterranean arid ecosystems [J]. Nature,2007,449:213-217.
  • 4LEFEVER R, LEJEUNE O, COUTERON P. In mathematical models for biological pattern [J]. IMA, 2000,121 (2) : 83-112.
  • 5HARDENBERG J V, MERON E,SHACHAK M,et al. Diversity of vegetation patterns and desertification[J]. Physical Review letters, 2001,87(19) : 1981011-1981014.
  • 6CHOI Y S, HUAN Zhongdan, LUI Roger. Global existence of solutions of a strongly coupled quasilinear parabolic system with application to electrochemistry [J]. J of Differential Equations, 2003,194(2) : 406-432.
  • 7LADYZHENSKAYA O A. The mathematical theory of viscous incompressible flows [M]. 2nd ed. New York:Gordon Breach, 1969.
  • 8伍卓群,尹景学,王春明.椭圆与抛物型方程引论[M].北京:科学出版社,2002.13-18.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部