期刊文献+

非线性系统平稳分岐解镇定的简化原理

Reduction principle of stationary bifurcation stabilization of nonlinear systems
下载PDF
导出
摘要 研究了一类具有线性不可控模态的非线性系统平稳分岐解的镇定问题.假定系统参数不可测量.基于不变流形理论,从原非线性系统导出了一个一维的简化方程.从简化方程的性质导出了原系统能分岐镇定的一些充分和必要条件.并举例说明了此方法的有效性. This paper studies the problem of stationary bifurcation stabilization of a class of nonlinear control systems, in which the parameter is not measurable. Based on the theory of invariant manifolds, a reduction system of one dimension is derived. Bifurcation stabilization of one dinensional nonlinear system is relatively easy to be solved. Some necessary conditions and sufficient conditions for bifurcation stabilization of the original nonlinear system are obtained from properties of the reduction system. An example is presented to illustrate the utility of the results.
出处 《中国计量学院学报》 2005年第3期203-206,232,共5页 Journal of China Jiliang University
基金 国家自然科学基金资助项目(No.60274008 10472194)
关键词 非线性系统 分岐控制 动态输出反馈 nonlinear system bifurcation control stationary bifurcation
  • 相关文献

参考文献10

  • 1ABED E H, FU J H. Local feedback stabilization and bifurcation control: Ⅰ. Hopf bifurcation[J]. Systems &Control Letters, 1986, 7:11-17.
  • 2ABED E H, FU J H. Local feedback stabilization and bifurcation control: Ⅱ. Stationary bifurcation[J]. Systems& Control Letters, 1986,7: 467-473.
  • 3KANG W. Bifurcation and normal form of nonlinear control systems-part 1[J]. SIAM J Control Optim, 1998, 36:193-212.
  • 4KANG W. Bifurcation and normal form of nonlinear control systems-part 2[J]. SIAM J Control Optim, 1998, 36:213-232.
  • 5KANG W. Bifurcation control via state feedback for systems with a single uncontrollable mode[J]. SIAM J Control Optim, 2000, 38: 1428-1452.
  • 6WANG Y, MURRAY R M. Feedback stabilization of steady-state and Hopf bifurcations[C]. Proceedings of the37th Conference on Decision and Control, 1998, 2431-2437.
  • 7GU G, CHEN X, SPARKS A G, et al. Banda. Bifurcation stabilization with local output feedback[J]. SIAM J Control Optim, 1999, 37: 934-956.
  • 8WANG Y, MURRAY R M. Bifurcation control of rotating stall with actuator magnitude and rate limits: part 1-model reduction and qualitative dynamics[C]. Automatica, 2002,38: 597-610.
  • 9WANG H O, ABED E. H. Bifurcation control of a chaotic system[J]. Automatica, 1995, 31 : 1213- 1226.
  • 10CARR J. Aplications of centre Manifold Theory[M]. New York: Springer- Verlag, 1981.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部