期刊文献+

Pb(Mg_(1/3)Nb_(2/3)O_3-PbTiO_3晶体组分对结构与性能的影响 被引量:2

Composition dependence of the structures and electrical properties of Pb(Mg_(1/3)Nb_(2/3)O_3-PbTiO_3 single crystals
下载PDF
导出
摘要 用熔体Modified Bridgman法生长出尺寸直径40 mm长度80 mm的弛豫铁电单晶PMNT90/10,表明该方法不仅适合在准同型相界(MPB)附近生长PMNT单晶,也适合生长PT含量很低的PMNT单晶.在生长出的PMNT90/10晶体中,铁电相与顺电相两相共存,并呈现亚微畴结构特征.随着晶体组分由PMN组元变化到MPB组分附近,PMNT的电畴结构呈现微畴-亚微畴- 不规则宏畴-规则宏畴演化系列,而介电弛豫特性则逐步弱化.PMNT固熔体的电学性能依赖于晶体组分,(001)切型PMSNT90/10晶体的压电常数d33约80 pC/N,显著低于MPB附近组分,但其介电常数ε达到12600,明显高于后者. The relaxor-based ferroelectric single crystal 0.90Pb(Mg1/3Nb2/3)O3-0.10PbTiO3 (PMNT90/10) with the size of 40 mm in diameter and 80 mm in length was grown by a modified Bridgman technique. This suggests that the technique is suitable for the growth of PMNT crystals with lower PT content as well as those near the morphotropic phase boundary (MPB). PMNT90/10 crystal had the structure of a ferroelectric phase coexisting with a paraelectric one. A peculiar submicrodomain was found within the ferroelectric phase-predominated regions. With the changing of the compositions from PMN to PMNT near MPB, the ferroelectric domains evolve in the order of microdomain-sub-microdomain-irregular macrodomain-regular macrodomain, and the relaxor behavior becomes weak gradually. Moreover, PMNT90/10 crystal on the (001) cut exhibits lower values of piezoelectric constant d33 (80 pC/N) and higher values of dielectric constant ε (12, 6000) than the crystals near MPB.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2005年第5期506-511,共6页 Chinese Journal of Materials Research
基金 国家自然科学基金50072038资助项目~~
关键词 无机非金属材料 晶体生长 BRIDGMAN法 Pb(Mg1/3Nb2/3)O3-PbTiO3 弛豫铁电体 压电性能 inorganic non-metallic materials, crystal growth, Bridgman method, Pb(Mg1/3Nb2/3)O3-PbTiO3, relaxor-based ferroelectrics, piezoelectric constant
  • 相关文献

参考文献26

  • 1R E. Service, Science, 275, 1878(1997)
  • 2H.Fu, R.E.Cohen, Nature, 403, 281(2000)
  • 3S.E.Park, T.R.Shrout, J. Appl. Phys., 82(4), 1804(1997)
  • 4T.Kobayashi, S.Shimanuki, S.Saitoh, Y.Yamashita, Jpn. J. Appl. Phys., 36, 272(1997)
  • 5W.Chen, Z.G.Ye, J. Cryst. Growth, 233, 503(2001)
  • 6Y.Hosono, K.Harada, T.Kobayashi, K.Itsumi, M.Izumi, Y.Yamashita, N.Ichinose, Jpn. J. Appl. Phys., 41,7084(2002)
  • 7T.Li, A.M.Scotch, H.M.Chan, M.P. Harmer, J. Amer. Ceram. Soc., 81(1), 244(1998)
  • 8许桂生,罗豪甦,王评初,徐海清,殷之文.新型弛豫型铁电单晶PMNT的铁电与压电性能[J].科学通报,1999,44(20):2157-2161. 被引量:23
  • 9S.G.Lee, R.G.Monteiro, R.S.Feigelson, H.S.Lee, M.Lee, S.E. Park, Appl. Phys. Lett., 74, 1030(1999)
  • 10孙士文,潘晓明,李东林,李洪钧,朱丽慧,黄清伟,王评初.PMN-PT弛豫铁电固溶体的定向凝固组织与结晶习性[J].无机材料学报,2004,19(3):541-545. 被引量:7

二级参考文献29

  • 1Jang H M,J Am Ceram Soc,1992年,75卷,82页
  • 2Shrout T R,Ferroelectric Lett,1990年,12卷,63页
  • 3Ye Z G,Mat Res Bull,1990年,25卷,739页
  • 4Service R F. SCIENCE, 1997, 275 (8): 1878.
  • 5Oakley C G, Zipparo M J. 2000 IEEE Ultrasonics Symposium, Proceedings(IEEE, Piscataway, NJ, 2000),1157-1167.
  • 6Yamashita Y, Yokohama, Saitoh S. Piezoelectric material and ultrasonic probe. United States Patent, 1995,5: 209, 410.
  • 7Saitoh S, et al. Ultrasonic Probe. United States Patent, 1994, 5: 295, 487.
  • 8Saitoh S, et al. Piezoelectric single crystal, ultrasonic probe, and array-type ultrasonic probe. United States Patent, 1995, 5: 402, 791.
  • 9Wang Pingchu, et al. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, 2000, 2: 537-540.
  • 10Kelly J, Leonard M, Tatigate C, et al. J. Am. Ceram. Soc., 1997, 80 (4): 957-964.

共引文献33

同被引文献29

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部