期刊文献+

基于区间数信息的客户分类方法——客户资产价值体系的构建与应用 被引量:1

Customer Classification Based on Interval Number Information——Customer Asset Value System's Construction and Application
下载PDF
导出
摘要 首先基于客户具有的价值认知和企业客户数据的可获取性,在充分理解客户价值和客户资产的概念内涵基础之上,构建客户资产价值指标体系。随后,根据该体系指标的数据特性,引入基于指标区间数信息的聚类算法,由此实现理想的客户分类。最后,结合某销售公司的实例展示该方法的应用价值。 Firstly, on the basis of fully understanding of the customer owned value and the obtainable of the enterprisers customer data, Customer Asset Value system is constructed through synthesizing the connotation of Customer Value and Customer Asset. Secondly, according to the system index's data characteristic, cluster algorithm based on index's interval number information is introduced. Consequently, the classification of customer realizes ideal Finally, the instance of a selling company' customer classification showed the application value of the method.
出处 《价值工程》 2005年第10期30-33,共4页 Value Engineering
基金 国家自然科学基金 项目编号:70171045。
关键词 客户分类 区间数 客户资产价值 customer classificatlon interval numher customer asset value
  • 相关文献

参考文献9

二级参考文献47

  • 1王永贵,董大海.客户关系管理的研究现状、不足和未来展望[J].中国流通经济,2004,18(6):52-56. 被引量:52
  • 2陈明亮,李怀祖.客户价值细分与保持策略研究[J].成组技术与生产现代化,2001,18(4):23-27. 被引量:70
  • 3[1]Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. J. Cybernet.,1974, (3): 32-57.
  • 4[2]Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 5[3]Pezdrey W. Condition fury C-means[J]. Recognition Letters, 1996, 17: 625.
  • 6[4]Bellman R E, Zadeh L A. Decision-making in a fury environment[J]. Management Science, 1970, 17(4): 141-164.
  • 7[5]Chiu S L. A cluster estimation method to fuzzy model identification[ A ]. Proceedings of the IEEE Conference on Control Appilcations-Part2(of3)[C]. Glasgow, UK: August 1994. 1240-1245.
  • 8[6]Bezdek J C, Dunn J C. Optimal fuzzy partitions: A heuristic for estimating the parameters in a mixture of normal distributions[J].IEEE Transactions on Computers, 1986, (8): 935-938.
  • 9[7]Cheng T W, Goldgof D B, Hall E O. Fast fuzzy clustering[J]. Fuzzy Sets and Systems, 1998, 93: 49-56.
  • 10[9]Yang M S, Ko C H. On a class of fuzzy C-numbers clustering problems for fuzzy data[J]. Fuzzy Sets and Systems, 1996, 84: 49-60.

共引文献83

同被引文献5

  • 1Berger P D,Bolton R N,Bowman D,Briggs E,Kumar V,Parasuraman A,Terry C.Marketing Actions and the Value of Customer Asset[J].Journal of Services Research,2002,15(1):39-54.
  • 2Hwang C L,Yoon K.Multiple Attribute Decision Making:Methods and Applications[J].Springer-Verlag,Berlin,1981.
  • 3Chicco E.Customer classification using frequency-domain load pattern data[J].International Journal of Electrical Power and Energy Systems,2006,28(1):13-20.
  • 4Chiu C C,Chou Y C,Lu C J.Mining the customer credit using classification and regression tree and multivariate adaptive regression[J].Computational Statistics and Data Analysis,2006,50(4):1113-1130.
  • 5Zhang Q,Ma J,Fan Z,Chiang W.A Statistical Approach to Multiple-Attribute Decision-making with Internal Numbers[J].International Journal of Systems Science,2003,34(12-13):683-692.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部