期刊文献+

深过冷Si-Al合金的凝固过程和组织特征研究 被引量:4

Study on the Solidification and Structure Behaviors of Highly Undercooled Silicon-aluminum Alloy
下载PDF
导出
摘要 用高速摄影和扫描电镜研究了电磁悬浮熔炼条件下,Si-20%Al合金的凝固过程及其组织特征。结果发现,将Si-20%Al合金在氩气中进行电磁悬浮熔炼可使其获得375K的过冷度。过冷合金先结晶相的形貌和尺寸与其形核过冷度有关。在小过冷度下,合金的初生硅为粗大的长片多面体;过冷度增大到126 K后,初生硅变为均匀细小的等轴多面体。在过冷度小于328 K以前,初生硅的表面有明显棱角,表现出小平面生长的特征;过冷度大于328 K后,初生硅变为细小均匀表面有圆滑钟乳石状凸起、没有明显棱角的不规则多面体,表现出了非小平面生长的特征。 Using an electromagnetic levitation facility, droplets of Si-20at pct AI alloy were undercooled to a degree as high as 375 K by levitating it in pure argon. The crystal morphologies on the surface of the droplets during solidification process and after solidification were recorded by using a high speed camera and observed by scanning electron microscopy. The crystal morphology and size were found to vary with the nucleation undercooling. The morphology of the primary silicon is large elongate polyhedron in low undercooling region, and transforms to small isometric polyhedron when the undercooling is increased beyond 126 K. The surface of the polyhedral primary silicon has pronounced edges when the undercooling is lower than 328 K, which shows the behavior of lateral growth. As the undercooling is increased over 328K, the morphology of the primary silicon transforms to irregular polyhedron with one or several stalactitic bulges on its surface, which shows the behavior of continuous growth.
出处 《铸造技术》 EI CAS 北大核心 2005年第10期918-921,共4页 Foundry Technology
基金 教育部优秀青年资助计划项目(编号:1885)
关键词 过冷度 组织 形核 生长 Silicon Undercooling Structure Nucleation Growth
  • 相关文献

参考文献9

  • 1Jacobson D M. Light weight electronic packaging technology based on spray formed Si-Al[J]. Powder Metallurgy, 2000,43: 200.
  • 2Ejiofor U, Reddy R G. Developments in the processing and properties of particulate Al-Si composites[J]. JOM,1997,49:31.
  • 3蔡杨,郑子樵,李世晨,冯曦.轻质Si-Al电子封装材料制备工艺的研究[J].粉末冶金技术,2004,22(3):168-172. 被引量:19
  • 4Jian, Z. Y. , Nagashio, K. and Kuribayashi, K. , Direct observation of the crystal growth transition of undercooled silicon, Metall[J]. Mater. Trans., 2002,33:2947-2953.
  • 5Aoyama, T. and Kuribayashi, K. , Influence of undercooling on solid/liquid interface morphology in semiconductors,Acta Mater[J]. Metall. , 2000,48:3739.
  • 6Liu, R. P. , Volkmann, T. and Herlach, D. M. ,Undercooling and solidification of Si by electromagnetic levitation[J]. Acta Mater. Metall. , 2001, 49, 439.
  • 7Nagashio, K., Murata, H.; Kuribayashi, K. In situ observation of solidification behavior of Si melt dropped on Si wafer by IR thermography[J], Journal of Crystal Growth, 2005,275:1685-1690.
  • 8Aoyama, T. , Kuribayashi, K. ,Novel criterion for splitting of plate-like crystal growing in undercooled silicon melts[J]. Acta Materialia. 2003,51:2297-2303.
  • 9Zengyun Jian, K. Kuribayashi, et al, Critical undercoolings for the transition from lateral to continuous growth in undercooled Silicon and Germanium[J]. Acta materilia,2004,52: 3323-3333.

二级参考文献8

  • 1[2]Jacobson D M.Spray-formedsilicon-aluminum. Advanced Materials &Processes,2000, (3):36~39
  • 2[3]Zweben C.Metal-matrix composites for electronic packaging. JOM,1992,44 (7):15~22
  • 3[5]Ejiofor J U, Reddy R G. Developments in the processing and properties of particulate Al-Si composites. , JOM, 1997, 49 (11): 31 ~37
  • 4[7]桂立丰编.机械工程材料测试手册.沈阳:辽宁科学技术出版社,1996.936
  • 5[9]Ferro A C, Derby B.Wetting behaviour in the Al-Si/SiC system:interface reactions and solubility effects. Acta Metall. Mater, 1995,43(8) :3061 ~3073
  • 6[10]Laurent V, Chatain D. Wettability of SiO2 and oxidized SiC by aluminum. Materials Seienee and Engineering A, 1991,135 ( 1 - 2):89~ 94
  • 7周贤良,吴江晖,张建云,华小珍,周云军.电子封装用金属基复合材料的研究现状[J].南昌航空工业学院学报,2001,15(1):11-15. 被引量:38
  • 8王敬欣,张永安.应用于电子封装的新型硅铝合金的研究与开发[J].材料导报,2001,15(6):18-20. 被引量:17

共引文献18

同被引文献43

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部