期刊文献+

基于粗糙集神经网络的非线性系统动态参数预测

Dynamic Parameters Prediction of Nonlinear System Based on Rough Sets and Artificial Neural Network
下载PDF
导出
摘要 为建立非线性系统辨识和预测模型,利用粗糙集和人工神经网络方法进行动态参数预测。考虑非线性系统中影响因子之间的高度非线性和不确定性,结合粗糙集和人工神经网络的优点,提出了一种动态参数预测的新方法。该方法充分考虑了学习样本的数据特性,简化了决策规则从而降低了网络拓扑结构规模,计算速度快,容错能力强,误差小,精度高。计算结果表明,该方法用于非线性系统动态参数分析是有效可行的。 The aim of research is to set up prediction model of nonlinear system. Take advantage of rough sets and artificial neural network. Consider the nonlinearity and uncertainty between the impact factors of nonlinear system. Set up the topological structure of RS-ANN. Present a new method on identification and prediction of nonlinear system dynamic parameters. Rough sets can judge the characters of sample data of ANN so get the decision rules easily. This method simplifies the structure of network and reduces the calculation time so get high speed in processing the data. It has high ability of fault-tolerant and has small errors. Results of calculation prove its efficiency and availability in the dynamic analysis of nonlinear system.
出处 《机械工程与自动化》 2005年第5期4-6,9,共4页 Mechanical Engineering & Automation
关键词 粗糙集 神经网络 非线性系统 动态参数 预测 rough sets ANN nonlinear system dynamic parameters prediction
  • 相关文献

参考文献8

  • 1Efe M.O,Kaynak O.A comparative study of neural network structures in identification of nonlinear systems [J].Mechatronics,1999(9):287-300.
  • 2Lefik M,Schrefler B A.Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading [J].Computers and Structures,2002(80):1699-1713.
  • 3Pham D T,Karaboga D.Training Elman and Jordan networks for system identification using genetic algorithms [J].Artificial Intelligence in Engineering,1999(13):107-117.
  • 4Yasdi R.Combining rough sets learning and neural learning method to deal with uncertain and imprecise information[J].Neurocomputing,1995(7):61-84.
  • 5Jagielska I.An investigation into the application of neural networks,fuzzy logic,genetic algorithms,and rough sets to automated knowledge acquisition for classification problems[J].Neurocomputing,1999(24):37-54.
  • 6许志兴,丁运亮,陆金桂.一种基于粗糙集理论的粗糙神经网络构造方法[J].南京航空航天大学学报,2001,33(4):355-359. 被引量:12
  • 7Jelonek J.Rough set reduction of attributes and their domains for neural networks[J].Computational Intelligence,1995,11(2):339-347.
  • 8韩祯祥,张琦,文福拴.粗糙集理论及其应用[J].信息与控制,1998,27(1):37-45. 被引量:86

二级参考文献1

  • 1王士同,神经模糊系统及其应用,1998年,57,179页

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部