期刊文献+

一种新型缺陷接地结构的BP神经网络模型 被引量:3

The BP Neural Network Model of a Novel Defected Ground Structures
下载PDF
导出
摘要 组合式非周期性缺陷接地结构(CNPDGS)是在微波电路的接地金属平面上人为地蚀刻出特殊形状的非周期性"缺陷",改变接地电流的分布,从而改变传输线的频率特性。本文针对一种新型的具有双阻带特性的CNPDGS,在场分析的基础上建立了其BP神经网络模型,将其结构尺寸和频率作为输入样本,传输系数参数作为输出样本,采用贝叶斯正则化算法对神经网络进行训练。神经网络训练完成后,在学习范围内将其结构尺寸和频率输入到神经网络模型,从输出端立即得到准确的传输系数。最后通过了实验验证,进一步说明了神经网络模型的正确性和有效性,为DGS的分析和设计提供了新的有效途径。 Combinatorial nonperiodic defected ground structures (CNPDGS) are the structures that are etched on the cireuit~ ground plane with nonperiodic units of special form, the ground current distribution can be changed, and the frequency properties of the transmission lines can be influenced. For a novel CNPDGS with the characteristic of double stop band. Artificial neural network (ANN) model is developed on the basis of FDTD analysis for the first time. The structure size of the CNPDGS and the frequency are defined as the input samples of the ANN model, the parameters of transmission coefficient are defined as the output samples. As the ANN model has been trained with the Bayesian Regularization algorithm, the transmission coefficient of the CNPDGS at any arbitrary sizes and the frequencies within region trained can be obtained quickly from the ANN model. Finally, the ANN model has been approved by results of experimentation. It is also showed that the ANN model is very effective. The ANN model will provide powerful approach for the analysis and design of defected ground structures (DGS).
出处 《微波学报》 CSCD 北大核心 2005年第5期46-50,共5页 Journal of Microwaves
基金 国家自然科学基金资助项目(60371029)
关键词 缺陷接地结构 组合式非周期性结构 双阻带 人工神经网络 传输系数 BP神经网络模型 接地电流 结构尺寸 缺陷 神经网络训练 Defected ground structures (DGS), Combinatorial nonperiodic structure, Double stop band, Artificial neural network (ANN), Transmission coefficient
  • 相关文献

参考文献10

  • 1Dal Ahn,Jun-Seok Park,Chul-Soo Kim, et al.. A Design of the Low-Pass Filter Using the Novel Microstrip Defected Ground Structure. IEEE Trans. MTT. ,2001,49( 1 ):86 ~ 93.
  • 2Jun-Seok Park,Jun-Sik Yun, Dal Ahn. A Design of the Novel Coupled-Line Bandpass Filter Using Defected Ground Structure With Wide Stopband Performance.IEEE Trans. MTT. ,2002,50 ( 9 ): 2037 ~ 2043.
  • 3Zhang Q J,Gupta K C. Neural Networks for RF and Microwave Design. Norwood, MA: Artech House, 2000.
  • 4苏高利,邓芳萍.论基于MATLAB语言的BP神经网络的改进算法[J].科技通报,2003,19(2):130-135. 被引量:170
  • 5HaganMT DemuthHB BealeMH 戴葵(译).神经网络设计[M].北京:机械工业出版社,2002.119-166.
  • 6许少华,梁久祯,何新贵.模糊神经网络学习样本的选取与网络扩展能力研究[J].计算机科学,2001,28(6):94-96. 被引量:22
  • 7王雷.[D].天津大学,2004.
  • 8王少波,柴艳丽,梁醒培.神经网络学习样本点的选取方法比较[J].郑州大学学报(工学版),2003,24(1):63-65. 被引量:20
  • 9吴文,李兴国.微带线的神经网络模型[J].电子科学学刊,2000,22(3):517-521. 被引量:4
  • 10Wang Fang, Devabhaktuni V K,Zhang Q J. A hierarchical neural network approach to the development of a library of neural models for microwave design. IEEE Trans. MTT. 1998,46(12):2391 ~ 2403.

二级参考文献23

  • 1刘曙光,郑崇勋,刘明远.前馈神经网络中的反向传播算法及其改进:进展与展望[J].计算机科学,1996,23(1):76-79. 被引量:51
  • 2北京大学数学力学系概率统计组.正交设计法[M].北京:石油化学出版社,1976.1-35.
  • 3赵振宇 徐用懋.模糊理论和神经网络的基础与应用[M].北京,南宁:清华大学出版社,广西科学技术出版社,1997.105-106.
  • 4方开泰 王元.数论方法在统计中的应用[M].北京:科学出版社,1994..
  • 5杨诠让,毫米波传输线,1986年,31页
  • 6Rumelhart D E, Hinton G E, Williams R J. Learninginternal repr esentatio ns by error propagation[A].Rumelhart D E James L.McClelland J L. Parallel di stributed processing: explorations in the microstructure of cognition[C], vol ume 1, Cambridge, MA:MIT Press, 1986.318~362.
  • 7Neural Network Toolbox User's Guide .The Mathworks,inc. 1999.
  • 8Fahlman S E. Faster-learning variations on back-propagation: an e mpirical study[A].Touretzky D,Hinton G,Sejnowski T. Proceedings of the 1988 C onnectionist Models Summer School[C].Carnegic Mellon University,1988,38~51.
  • 9Jacobs R A. Increased rates of convergence through learning rate adaptation[J]. Neural Networks,1988,1:295~307.
  • 10Shar S, Palmieri F. MEKA-a fast, local algorithm for training feedforwa rd neural networks[A]. Proceedings of the International Joint Conference on Ne ural Networks[C]. IEEE Press, New York, 1990.41~46.

共引文献224

同被引文献31

  • 1王雷,丁荣林,王安国,胡俊杰,李增路,何庆国,乐柏林.组合式非周期缺陷接地结构的滤波特性研究[J].电子学报,2005,33(2):375-377. 被引量:2
  • 2金涛斌,王安国,丁荣林,吴咏诗.周期性缺陷接地结构的BP神经网络模型[J].固体电子学研究与进展,2005,25(1):114-118. 被引量:4
  • 3李媛,栗换彩,丁荣林.Comparison of Characteristics of Periodic and Non-Periodic Defected Ground Structures[J].Transactions of Tianjin University,2006,12(5):387-390. 被引量:1
  • 4Chul-Soo K.A novel 1-D periodic defected ground structure for planar circuits[J].IEEE Microwave and Guided Wave Letters, 2000,10(4) : 131-133.
  • 5Jun-Seok P, Jun-Sik Y, Ahn D.A design of the novel cou- pled-line bandpass filter using defected ground structure with wide stopband performance[J].IEEE Trans on MTT, 2002,50 (9) : 2037-2043.
  • 6Guan Xuehui, Li Guohui, Ma Zhewang.Optimized design of a low-pass filter using defected ground structure[C]//Proceedings of APMC, 2005 :4-7.
  • 7Yang Jinping, Wu Wen.Compact elliptic-function low-pass filter using defected ground structure[J].IEEE Microwave and Wire- less Components Letters,2008,18(9) :578-580.
  • 8Chen Hanjan.A novel cross-shape DGS applied to design ul- tra-wide stopband low-pass filters[J].IEEE Microwave and Wire- less Components Letters,2006,16(5) :252-254.
  • 9Ting Sio-Weng.Miniaturized microstrip low-pass filter with wide stopband using double equilateral U-shaped defected ground structure[J].IEEE Microwave and Wireless Components Letters, 2006,16(5) :240-242.
  • 10Boutejdar A.A compact microstrip multi-layer low-pass filter us- ing triangle slots etched in the ground plane[C]//Proceedings of the 36th European Microwave Conference, 2006:271-274.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部