期刊文献+

机械装配中的对称群方法 被引量:1

Symmetry Group in Mechanical Assembling
下载PDF
导出
摘要 研究机械装配中的对称群方法.定义了装配物体特征的对称群.运用对称群知识进行空间推理,产生了关于物体之间的可能关联位置集合的群论结构,得到两个物体能否装配的必要条件,并举例说明其应用. The symmetry group approach in mechanical assembling is studied. Symmetry group as a feature for bodies in assembling is defined. Making use of the concept of symmetry group, spatial reasoning is implemented and the construction in group theory for sets of possible relative locations among bodies can be developed. The necessary conditions whether two bodies can be assembled are then obtained. An example is given to illustrate the application of the approach.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第10期852-855,共4页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(0272021)
关键词 机械装配 对称群 空间推理 mechanical assembly symmetry group spatial reasoning
  • 相关文献

参考文献7

  • 1Hervé J M. Analyse structurelle des mécanismes par group des déplacements [J]. Mechanism Machine Theory, 1977, 13(4): 437-450.
  • 2Popplestone R J. Group theory and robotics [A]. The First Int J Robotics Research[C]. Cambridge, MA: MIT Press, 1984. 55-64.
  • 3Federico T, Torras C. A group-theoretic approach to the computation of symbolic part relations [J]. IEEE Journal Robot and Automation, 1987, 14: 79-107.
  • 4Liu Y, Popplestone R J. Planning for assembly for solid models [Z]. Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Washington, DC: IEEE, Computer Society Press, 1989, 222-227.
  • 5Liu Y, Popplestone R J. A group theoretic formalization of surface contact [J]. Int J Robotics Research, 1994,13(2): 148-161.
  • 6Brown C M. PADL2: A technical summary [J]. IEEE Computer Graphics Applications,1982 ,2(2): 69-84.
  • 7Ambler A P, Popplestone R J. Inferring the positions of bodies form specified spatial relationships [J]. Artificial Intelligence, 1975, 6(2): 157-174.

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部