期刊文献+

Si_n/Si_n^-(n=7~10)的结构和电子亲合能的研究

Structure and Electron Affinity of Silicon Si_n/Si_n^-(n=7~10)
下载PDF
导出
摘要 选用4种不同的密度泛函理论方法(B 3LYP,BLYP,BP 86,B 3P 86),在全电子的双ζ加极化加弥散函数基组(DZP++)下,对S in/S in-(n=7~10)体系进行研究,获得它们的基态结构和电子亲合能.预测S i7/S i7-,S i8/S i8-,S i9/S i9-和S i10/S i1-0的基态结构分别为D5h(1A1′)/D5h(2A2)″,C2h(1Ag)/C3υ(2A2),Cs(1A′)/Cs(2A′)和C3υ(1A1)/C3υ(2A1).理论预测S i7,S i8,S i9和S i10的电子亲合能分别为1.90,2.59,2.07和2.20 eV,BLYP方法预测的电子亲合能最为可靠的. Four kinds of density functional theory (DFT) methods (B3LYP, BLYP, BP86, and B3P86) are employed to predict the molecular structures and adiabatic electron affinities of Sin/ Sin^-(n= 7-10) species. The basis set is double-ξ plus polarization quality with additional s-and ptype diffuse functions, labeled as DZP++. The ground states of Si7/Si7^-, Si8/Si8^-, Si9/Si9^-, and Si10/Si10^- are D5h ( ^1A1′ )/D5h (^2A2"), C2h (^1Ag )/C3v (^2A2), C8 ( ^1A′ )/C5 (^2A′), and C3v ( ^1A1 )/C3v (^2A1) respectively. Compared with the experimental values, the BLYP method is the best for electron affinities. The electron affinities corrected by zero-point vibrational energies for Si7, Si8, Si9, and Si10 are 1.90, 2.59, 2.07, and 2.20 eV, respectively.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第10期922-925,共4页 Transactions of Beijing Institute of Technology
关键词 分子结构 电子亲合能 密度泛函理论 silicon clusters molecular structures electron affinities density functional theory
  • 相关文献

参考文献11

  • 1Zhu X, Zeng X C. Structures and stabilities of small silicon clusters: Ab initio molecular-orbital calcula-tions of Si7-Si11[J]. J Chem Phys, 2003, 118 (8): 3558-3570.
  • 2Xu C, Taylor T R, Burton G R, et al. Vibrationally resolved photoelectron spectroscopy of silicon cluster anions Si-n (n=3~7) [J]. J Chem Phys, 1998, 108(4): 1395-1406.
  • 3Honea E C, Ogura A, Murray C A, et al. Raman spectra of size-selected silicon clusters and comparison with calculated structures [J]. Nature, 1993, 366 (4): 42-44.
  • 4Raghavachari K, Rohlfing C M. Electronic structures of the negative ions Si-2-Si-10: Electron affinities of small silicon clusters [J]. J Chem Phys,1991, 94(5): 3670-3678.
  • 5Kawamata H, Negishi Y, Kishi R, et al. Photoelectron spectroscopy of silicon-fluorine binary cluster anions (SinF-m) [J]. J Chem Phys, 1996, 105(13): 5369-5376.
  • 6Kishi R, Kawamata H, Negishi Y, et al. Geometric and electronic structures of silicon-sodium binary clusters Ⅱ. Photoelectron spectroscopy of SinNa-m cluster anions [J]. J Chem Phys, 1997, 107 (23): 10029-10043.
  • 7Rienstra-Kiracofe J C, Tschumper G S, Schaefer H F, et al. Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations [J]. Chem Rev, 2002, 102 (1): 231-282.
  • 8Hunzinaga S. Gaussian-type functions for polyatomic systems Ⅰ [J]. J Chem Phys, 1965, 42: 1293-1302.
  • 9Dunning T H. Gaussian basis functions for use in molecular calculation Ⅰ. Contraction of (9s5p) atomic basis sets for the first-row atoms [J]. J Chem Phys, 1970, 53: 2823-2833.
  • 10Brown S T, Rienstra-Kiracofe J C, Schaefer H F. A systematic application of density functional theory to some carbon-containing molecules and their anions [J]. J Phys Chem A, 1999, 103: 4065-4077.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部