期刊文献+

二维稳态晶体生长控制方程的数值解

Numerical solution of governing equations for two-dimension steady state crystal growth
下载PDF
导出
摘要 分析了在均匀流场的作用下,金属凝固过程中晶体生长浓度的二维稳态方程的边值问题.运用有限差分法将微分方程数值离散化为线性代数方程组.用初等变换法将该代数方程组分解为多个方程组进行处理,提高了计算效率.模拟结果揭示了在均匀流场作用下, 沿枝晶生长的方向。 A boundary value problem of governing equations for the concentration of crystal growth is solved in the two-dimension steady state considering the effect of uniform convection field. The differential equation is numerically discretized into a system of linear algebraic equations by using the finite difference method. In order to improve computational efficiency, the system of linear algebraic equations is decomposed to several sub-systems. The result of numerical simulation shows that the concentration of crystal growth in steady state presents oscillating attenuation along the direction of dendrite growth in the action of uniform convection field.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2005年第5期560-563,共4页 Journal of University of Science and Technology Beijing
基金 国家重点基础规划项目(No.G2000067206-1)
关键词 晶体生长 偏微分方程 边值问题 数值解 crystal growth partial differential equation boundary value problem numerical solution
  • 相关文献

参考文献12

  • 1Nash G E, Glicksman M E. Capillarity-limited steady state dendritic growth(Ⅰ): theoretical development. Acta Metall, 1974,22:1283.
  • 2Xu J J. Interfacial wave theory of solidification: dentritic pattern formation and selection of tip velocity. Phys Rev A, 1991,15 (43):930.
  • 3Xu J J. Generalized needle solution, interfacial instabilities and pattern formation. Phys Rev E, 1996, 53(5): 5051.
  • 4Xu J J. Interfacial Wave Theory of Pattern Formation. Berlin Springer-Verlag, 1998.
  • 5Wang M, Zhong S, Yin X B. Nanostructured copper filaments in electrochemical deposition. Phys Rev Lett, 2001, 86:3827.
  • 6孙仁济 王自东 陈明文 等.铝合金晶体生长稳态时的控制方程及解析解[J].中国有色金属学报,2002,12(1):2-2.
  • 7廖福成 郑连存.稳态晶体生长控制方程的解析解[A]..全国信息与计算科学学术研讨会论文集[C].西安:陕西人民出版社,2002.31.
  • 8廖福成,祖翠娥,郑连存,王自东,李为东.控制熔体浓度三维稳定态方程的精确解[J].北京科技大学学报,2004,26(1):53-55. 被引量:2
  • 9王自东,周永利,常国威,胡汉起.控制单相合金凝固界面形态非线性动力学方程[J].中国科学(E辑),1999,29(1):1-10. 被引量:14
  • 10王凤英,陈明文,孙仁济,王自东.三维稳态晶体生长的物理本质[J].北京科技大学学报,2003,25(3):230-233. 被引量:6

二级参考文献15

  • 1孙仁济 王自东 陈明文 等.铝合金晶体生长稳态时的控制方程及解析解[J].中国有色金属学报,2002,12(1):2-2.
  • 2Mullins W W, Sekeka R F. Stability of a planar interface during solidification of a dilute binary alloy [J]. J Appl Phys, 1964, 35:444.
  • 3Mullins W W, Sekeka R F. Morphological stability of a particle growing by diffusion or heat flow [J]. J Appl Phys, 1963, 34:323.
  • 4Langer J S. Instability and pattern formation in crystal growth [J]. Rev Mod Phys, 1980, 52:1.
  • 5Langer J S, Hong D A. Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy [J]. Phys Rev A, 1986, 34:1462.
  • 6Langer J S, Muller-Krumbhaar H. Theoretical growth--elements of a stability analysis; Instability in the limit of vanishing surface tension; effects of surface tension [J].Acta Metall, 1978, 26:1681.
  • 7Xu J J. Interface wave theory of solidification--dendritic pattern formation and selection of tip velocity [J]. Phys Rev A, 1991,15(43): 930.
  • 8Xu J J. Generalized needle solution, instabilities and pattern formation [J]. Phys Rev E, 1996, 53(5): 5051.
  • 9Xu J J. Interface Wave Theory of Pattern Formation [M].Springer, 1998.
  • 10Wang Mu, Zhong Sheng, Yin Xiaobo, et al. Nanostructured copper filaments in electrochemical deposition [J].Phys Rev lett, 2001, 86:3827.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部