期刊文献+

用于四结电池的InGaAsN材料研究

Research on InGaAsN for Quadruple-junction Solar Cells
下载PDF
导出
摘要 随着InGaP2/InGaAs/Ge三结太阳电池技术日趋成熟,具有更高理论效率的基于GaAs体系的四结电池新材料A lInGaP/InGaAs/?(新材料)/Ge已经受到人们的关注,经过计算,要求新材料的禁带宽度应该为0.95 eV^1.05 eV。InxGa1-xAs1-yNy材料的禁带宽度可以调整为0.95 eV^1.05 eV,是有望实现突破的材料。我们通过选取合适的生长方案,在D180MOCVD系统上外延生长了InxGa1-xAs1-yNy材料,并通过高分辨X光双晶衍射仪、分光光度计以及电化学电容-电压(EC-V)测试仪等对材料性能进行了分析。获得了室温下禁带宽度为1.17 eV的InxGa1-xAs1-yNy材料。 The InGaP2/InGaAs/Ge triple-junction solar cells technology has been mature. The materials of GaAs based quadruple-junction solar cells which have a higher theory conversion efficiency are attracting the researchers. InxGa1-xAs1-yNy is an appropriate candidate which the band gap can vary from 0.95eV to 1.05ev. InxGa1-xAs1-yNy layers were grown by metal organic chemical vapor deposition on the GaAs substrate in D180 MOCVD system. The characteristics of InxGa1-xAs1-yNy were studied by using highresolution double-crystal X-ray diffraction, spectrophotometer and electrochemical C-V profiler. The band gap of the InxGa1-xAs1-yNy was 1.17eV at room temperature.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2005年第5期915-919,共5页 Journal of Synthetic Crystals
关键词 MOCVD 转换效率 外延 MOCVD conversion efficiency epitaxy
  • 相关文献

参考文献10

  • 1Kondow M , Uomi K , Niwa A , et al. GaInNAs: A Novel Material for Long-wavelength-rang Laser Diodes with Excellent High-temperature Performance [J]. Japanese Journal of Apply Physics, 1996 ,35: 1273.
  • 2Friedman D J , Geisz J F , Kurtz S R , etal. 1-eV Solar Cells with GaInNAs Active Layer [J]. Journal of Crystal Growth, 1998,195:409.
  • 3Hou H Q , Reinhardt K C , Kurtz S R , et al. Novel InGaAsN pn Junction for High Efficiency Multiple-junction Solar Cells , 2nd World Conference on Photovoltaic Specialists Conference[ C ]. Vienna: Joint Research Centre, Inc. , 1998:3600.
  • 4Friedman D J, Geisz J F, Kurtz S R, et al. 1 eV GaInNAs Solar Cells for Ultrahigh-efficiency Multijunction Devices , 2nd World Conference on Photovoltaic Specialists Conference[C]. Vienna: Joint Research Centre, Inc. , 1998:3.
  • 5Kurtz S R , Allerman A A , Jones E D , et al. InGaAsN Solar Cells with 1.0 eV Band Gap , Lattice Matched to GaAs [ J ] . Applied Physics Letters ,1999,74:729.
  • 6Geisz J F , Friedman D J , Kurtz S R , et al. Photocurrent of 1 eV GaInNAs Lattice-matched to GaAs [ J ]. Journal of Crystal Growth, 1998,195:401.
  • 7Kurtz S R, Allerman A A , Seager C H , et al. Minority Carrier Diffusion, Defects, and Localization in InGaAsN, with 2% Nitrogen [J].Applied Physics Letters, 2000,77:400.
  • 8Zhang S B, Wei S H. Nitrogen Solubility and Induced Defect Complexes in Epitaxial GaAs: N [ J ]. Physics Review Letters, 2001,86:1789.
  • 9Friedman D J , Geisz J F , Kurtz S R, et al. 1-eV GaInNAs Solar Cells for Ultrahigh-efficiency Multijunction Devices, 2nd World Conference on Photovoltaic Specialists Conference[ C ]. Vienna: Joint Research Centre, Inc. , 1998:132.
  • 10Ptak A J, Kurtz Sarah, Curtis C, et al. Incorporation Effects in MOCVD-grown InGaAsN Using Different Nitrogen Precursors [J]. Journal of Crystal Growth, 2002, 243:231.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部