期刊文献+

混沌序列复杂性分析及其数值仿真的精度问题 被引量:1

Complexity Analysis of Chaotic Sequence and the Accuracy of Its Numerical Simulation
下载PDF
导出
摘要 介绍一种能够定量分析混沌序列复杂性的计算方法,并以Lorenz混沌系统的数值序列复杂性计算为例,说明数值序列的伪随机二进制转化过程中精度选取的重要性. A quantitative computable method of sequence complexity is introduced in this paper, and it is demonstrated the importance of computing accuracy selection for floating point number being transformed to pseudorandom binary sequence by the complexity analysis of chaotic sequence of Lorenz equations.
出处 《集美大学学报(自然科学版)》 CAS 2005年第3期210-215,共6页 Journal of Jimei University:Natural Science
基金 国家自然科学基金资助项目(6988600260076015) 福建省自然科学基金资助项目(A0010019) 集美大学科研启动基金资助项目(F04005ZA2005008)
关键词 序列复杂性 LORENZ混沌系统 混沌二进制序列 计算精度 complexity of sequence Lorenz chaotic system chaotic binary sequence computing precision
  • 相关文献

参考文献12

  • 1Lorenz E N. Deterministic Nonperiodic Flow [J]. J Atmospheric Sci, 1993, 71 (1): 130-141.
  • 2Zhou C S, Lai C H. Analysis of spurious synchronization with positive conditional Lyapunov exponents in computer simulations [J]. HYSICA D, 2000, 135 (1-2): 1-23.
  • 3Tohru Kohda, Akio Tsuneda, Tetsuya Sakae. Chaotic Binary Sequences by Chebyshev Maps and Their Correction Properties [C]. IEEE Second International Symposium on Spread Spectrum Techniques and Applications. 1992. 63-66.
  • 4F C M Lau, M Ye, C K Tse, et al. Anti-Jamming Performance of Chaotic Digital Communication System [J]. IEEE transactions on circuits, 2002, 49 (10): 1486-1494.
  • 5Tohru Kohda, Akio Tsuneda. Statistics of Chaotic Binary Sequences [ J ]. IEEE transactions on information theory,1997, 43 (1): 104-112.
  • 6Tohru Kohda, Akio Tsuneda. Pseudonoise sequences by chaotic nonlinear maps and their correlation properties [ J ]. IEICE Trans, 1993, 77 (8): 855 -862.
  • 7C H Bennett, Péter Gács, Ming Li, et al, Information Distance [J]. IEEE transactions on information theory, 1998. 44(4): 1407-1423.
  • 8P Hertling, K Weihrauch. Randomness spaces [A]. K G Larsen, S Skyum, G Winskel. Automata, Languages and Programming [C]. Berlin: Springer, 1998. 1443, 56-63.
  • 9Peter Grassberger, Itamar Procaccia. Estimation of the Kolmogorov entropy from a chaotic signal [J]. PHYSICAL REVIEW A, 1983, 28 (4): 2591-2593.
  • 10Heinz Georg Schuster. Deterministic Chaos: An Introduction [ M]. Weinheim: Physik-Verlag, 1984.

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部