期刊文献+

不具有平稳分布NA列的加权和的强收敛速度

STONG CONVERGENCE RATE OF WEIGHTED SUMS FOR NA SEQUENCES WITHOUT STATIONARY DISTRIBUTION
下载PDF
导出
摘要 讨论了不同分布NA随机变量序列加权和的完全收敛性,推广并改进了Stout(文[3])关于iid列的相应结果.获得了较[2]中的定理3.1更为一般的完全收敛性. In this paper, we discuss complete convergence of weighted sums for NA sequences, extend and improve corresponding results for lid sequences. We obtain more general complete convergence than Theorem 3.1 in [2].
出处 《安徽师范大学学报(自然科学版)》 CAS 2005年第3期266-269,共4页 Journal of Anhui Normal University(Natural Science)
关键词 NA列 加权和 完全收敛性 NA sequences weighted sums complete convergence
  • 相关文献

参考文献5

二级参考文献12

  • 1Joag-Dev K. and Proschan F., Negative association of random variable with applications, Ann. Star., 11(1)(1983),286-295.
  • 2Hsu P.L., Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci., U.S.A., 2(1947),25-31.
  • 3Liang Han-Ying, Su Chun, Complete convergence for weighted sums of NA sequences, Statist. & Prob. Lett., 45(1999),85-95.
  • 4Liang Han-Ying, Complete convergence for weighted sums of negatively associated random variables, Statist. & Prob.Lett., 48(2000), 317-325.
  • 5Stout W.F.,Almost Sure Convergence,Acadamic Press,New York,1974.
  • 6Cogburn R. Markov Chains in random environments: the case of Markovian environment[J]. Ann Prob, 1980,8 (3) : 908 - 916.
  • 7Cogburn R. The ergodic theory of Markov chains in random environmems[J]. Z. Wahrsch. Verw. Gebiete, 1984,66(2) : 109-128.
  • 8Orey S. Markov chain with stochastically stationary, transition prohabilities[J]. Ann Prob, 1991,19(3) :907 - 928.
  • 9王岳宝,苏淳.不同分布NA列加权和的强极限定理及其在线性模型中的应用[J].应用数学学报,1998,21(4):571-578. 被引量:19
  • 10李应求.关于马氏环境中马氏链的几点注记[J].数学进展,1999,28(4):358-360. 被引量:34

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部