期刊文献+

在涂层催化剂上甲醇水蒸气重整的本征动力学研究 被引量:4

Intrinsic Kinetics of Methanol -Steam Reforming over Coating Catalyst
下载PDF
导出
摘要 使用环状模拟微型反应器,研究了在涂层催化剂上甲醇水蒸气重整的本征动力学.涂层催化剂为Cu50/Zn50[Ce5],在消除内外扩散影响的条件下,在478~508 K范围内进行甲醇水蒸气重整的实验;利用线性最小二乘法,由实验数据确定双速率动力学模型参数.甲醇重整反应速率常数为3.492×1011,活化能为99.937kJ/mol;甲醇分解反应速率常数为8.126×1011,活化能为121.571 kJ/mol.F统计检验的结果表明,所得本征动力学模型适用于涂层催化剂. Intrinsic kinetics of methanol - steam reforming over coating catalyst Cu50/Zn50 [ Ce5 ] was investigated. Methanol - steam reforming was carried out in an annular simulation microreactor within 478- 508 K temperature range, when elimination of internal and external diffusion effects on reaction were taken into consideration. According to experimental data, the parameters for double rate kinetics model were estimated by using least squares method to conduct linear regression. Rate constant and apparent activation energy for kinetics model of methanol reforming were 3. 492 × 10^11 and 99.937 kJ/mol respectively, and rate constant and apparent activation energy for kinetics model of methanol decomposition were 8. 126 × 10^11 and 121. 571 kJ/mol respectively. The result showed that intrinsic kinetics model could be applied to the coating catalyst.
出处 《石油化工》 EI CAS CSCD 北大核心 2005年第11期1055-1059,共5页 Petrochemical Technology
关键词 微型反应器 本征动力学 甲醇 水蒸气 重整 燃料电池 催化剂 microreactor intrinsic kinetics methanol steam reforming hydrogen fuel cell catalyst
  • 相关文献

参考文献13

  • 1Cacciola G, Antonucci V, Freni S. Technology up Date and New Strategies on Fuel Cells. J Power Sources,2001,100:67 ~ 79.
  • 2Ogden J M, Steinbugler M M, Kreutz T G. A Comparison of Hydrogen, Methanol and Gasoline as Fuels for Fuel Cell Vehicles: Implications for Vehicle Design and Infrastructure Development. J Power Sources, 1999,79:143 ~ 168.
  • 3Hollady J D, Jones E O, Phelps M, et al. Microfuel Processor for Use in a Miniature Power Supply. J Power Sources,2002,108: 21 ~ 27.
  • 4Patil A S, Dubois T G, Sifer N, et al. Portable Fuel Cell Systems for America's Army: Technology Transition to the Field. J Power Sources, 2004,136:220 ~ 225.
  • 5Park G, Seo D J, Park S H, et al. Development of Microchannel Methanol Steam Reformer. Chem Eng J,2004,101:87 ~ 92.
  • 6Pour V, Barton J, Benda A. Kinetics of Catalyzed Reaction of Methanol with Water Vapour. Collect Czech Chem Commun, 1975,40:2 923 ~ 2 934.
  • 7Kobayashi H, Takezawa N, Minochi C. Methanol Reforming Reaction over Copper- Containing Mixed Oxides. Chem Lett, 1976,12:1 347 ~ 1 350.
  • 8Takahashi K, Kobayashi H, Takezawa N. On the Difference in Reaction Pathways of Steam Reforming of Methanol over Opper - Silica and Platinum -Silica Catalysts. Chem Lett, 1985,6:759 ~ 762.
  • 9Su T B, Rei M H. Steam Reforming of Methanol over Nickel and Copper Catalysts. J Chin Chem Soc, 1991,38:535 ~ 541.
  • 10Jiang C J,Trimm D L,Wainwright M S,et al. Kinetic Study of Steam Reforming of Methanol over Copper - Based Catalysts. Appl Catal,A,1993,93(2) :245 ~255.

二级参考文献4

  • 1国家科学技术委员会,离子交换膜燃料电池技术课题可行性论证研究报告,1997年
  • 2Jiang C J,Appl Catal A:Ceneral,1993年,97卷,2期,145页
  • 3Jiang C J,Appl Catal A:Ceneral,1993年,93卷,2期,245页
  • 4李绍芬,化学与催化反应工程,1986年

共引文献9

同被引文献43

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部