期刊文献+

电场中阳离子交换树脂对水解离作用的研究

Effects of Cation-Exchange Resins on Water Dissociation in Electric Field
下载PDF
导出
摘要 针对传统电解加工存在的易造成环境污染等问题,本文提出使用纯水作为电解液的新思路,并将磺酸型阳离子交换树脂用金属离子改性后,在电解加工间隙进行填料。通过测量电流-电压特性曲线,研究了离子交换树脂对水解离的作用。实验结果表明:借助离子交换树脂用纯水作为电解加工的电解液具有可行性;树脂经与其亲和力较弱的阳离子改性后,强化了其催化解离纯水的能力,而用与其亲和力较强的阳离子改性后则表现较差。但进行负载修饰时,溶液中金属离子的浓度可能会影响到树脂上活性亲水位点的数量,而温度对树脂的催化性能具有一定的影响。 A new thinking of using pure water as the electrolyte in electrochemical machining is put forward to diminish some environmental problems in the traditional process. After modified with metal ions, the sulfonated cation-exchange resins are filled in the gap between the anode and the cathode. The effect of cation-exchange resins on water dissociation is studied by measuring the current-voltage curves of the cell. Experimental results show that in the presence of cation-exchange resins it is possible to use pure water as the electrolyte. The resins modified with positive ions of weaker affinity for resins have a better catalytic ability of water-dissociation than those modified with positive ions of stronger affinity. The concentration of metal ions in modification solutions can determine the number of hydrophilic sites in or on the resins. The temperature has an influence on the catalytic performance of the resins to some extent.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第5期648-652,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 航空科学基金(02H52049)资助项目
关键词 电解加工 阳离子交换树脂 催化作用 水解离 电流-电压曲线 electrochemical machining cation-exchange resins catalysis water dissociation currentvoltage curves
  • 相关文献

参考文献16

  • 1傅荣强,徐铜文,杨伟华.双极膜中间界面层研究进展[J].膜科学与技术,2002,22(6):42-47. 被引量:29
  • 2Onsager L. Deviations from ohm's law in weak electrolytes[J]. J Chem Phys,1934,2:559~615.
  • 3Ramirez P, Manzanares J A, Mafé S. Water dissociation effects in ion transport through anionic exchange membranes with thin cationic exchange surface films[J]. Ber Bunsenges Phys Chem, 1991,95(1):499~503.
  • 4Mafé S, Manzanares J A, Ramirez P. Model for ion transport in bipolar membranes [J]. Pbys Rev A,1990,42(10):6245~6248.
  • 5Tanioka A, Shimizu K, Hosono T, et al. Effect of interfacial state in bipolar membrane on rectification and water splitting[J]. Colloids Surf A, 1999,159:395~404.
  • 6Ramirez P, Rapp H J, Reichle S, et al. Currentvoltage curves of bipolar membranes [J]. J Appl Phys, 1992,72 (1): 259~ 264.
  • 7Ramirez P, Rapp H J, Mafé S, et al. Bipolar membranes under forward and reverse bias conditions[J]. J Electroanal Chem,1994,375:101~108.
  • 8Smith J R, Simons R, Weidenhaun J. Low frequency conductance of bipolar membranes demonstrates the presence of a depletion layer [J ]. J Membr Sci,1998,140(2): 155~ 164.
  • 9Simons R. Strong electric field effects on proton transfer between membrane-bound amines and water [J]. Nature, 1979,280: 824~826.
  • 10Fu R Q, Xu T W, Wang G, et al. PEG-catalytic water splitting in the interface of a bipolar membrane[J]. Journal of Colloid and Interface Science,2003,263(2) :386~390.

二级参考文献36

共引文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部