期刊文献+

辐射诱导表达载体pEgr-p16的构建及其体外蛋白表达的研究

Construction of expression vector pEgr-p16 and determination of p16 in vitro expression induced by ionizing radiation
原文传递
导出
摘要 目的构建辐射诱导表达载体pEgrp16并研究其体外稳定转染联合60Coγ射线照射对人宫颈癌HeLa细胞p16蛋白表达变化的影响。方法利用双酶切、粘端连接的方法构建了含有辐射诱导特性的早期生长反应因子Egr1和p16的pEgrp16的质粒载体,以脂质体介导的方法,将重组载体导入人HeLa细胞,采用免疫细胞化学和流式细胞术的方法检测照射转染后的HeLa细胞p16蛋白表达的变化。结果经全自动测序证明辐射诱导表达载体pEgrp16构建正确;稳定转染可见有明显的p16表达增强;5Gy以内p16蛋白表达呈剂量依赖性的增加,在2Gy照射后2hp16蛋白表达水平即开始增高,4h达到最高,12h趋于正常水平。结论本研究成功构建了辐射诱导表达载体pEgrp16,在HeLa细胞中蛋白表达明显增强。 Objective In this study, a recombinant plasmid pEgr-p16 was constructed, and the protein expression of p16 in HeLa cells was determined after the cells were transfected in combination with ^60 Co γ-rays irradiation. Methods The pEgr-p16 recombinant plasmid containing radio-sensitive promoter Egr-1 and p16 encoding sequence was constructed by double-enzyme cleavage and sticky end ligation techniques, pEgr-p16 plasmid was packed with lipofectamine to transfect human cervix epithelial carcinoma HeLa cell line, and p16 protein level was detected by immunocytochemistry and FCM. Results The plasmid pEgr-p16 was constructed correctly as confirmed by sequencing in both directions. The expression level of p16 protein was increased significantly. The level of p16 expression was dose-dependently increased below 5 Gy irradiation. The p16 level began to increase at 2 h after 2 Gy irradiation and there was a significant increase at 4 h, then gradually decreased to the control level at 12 h. Conclusion The expression vector pEgr-p16 which can be induced by ionizing radiation has been constructed successfully in this study. The expression level of p16 protein in HeLa cells increases markedly.
作者 刘建香 苏旭
出处 《中华放射医学与防护杂志》 CAS CSCD 北大核心 2005年第5期416-419,共4页 Chinese Journal of Radiological Medicine and Protection
基金 中国科学院近代物理研究所重离子加速器国家实验室课题基金资助
关键词 辐射诱导 表达载体 pEgr-p16 体外表达 蛋白表达 基因治疗 放射治疗 肿瘤 Γ射线 Human suppressor gene p16 pEgr-16 gene Expression vector induced by ionization radiation Gene combined with radiation therapy
  • 相关文献

参考文献13

  • 1Weichselbaum RR, Hallahan DE, Beckett MA, et al. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. Cancer Res, 1994,54: 4266-4269.
  • 2Hanna NN, Seetharam S, Mauceri HJ, et al. Antitumor interaction of short-course endostatin and ionizing radiation. Cancer J, 2000, 6: 287-293.
  • 3Takahashi T, Namiki Y, Ohno T. Induction of the suicide HSV-TK gene by activation of the Egr-1 promoter with radioisotopes. Hum Gene Ther, 1997, 8: 827-833.
  • 4Roth JA, Cristiano RJ. Gene therapy for cancer: What have we done and where are we going? J Natal Cancer Inst, 1997, 89:21-39.
  • 5Scott SD, Marples B, Hendry JH, et al. A radiation-controlled molecular switch for use in gene therapy of cancer. Gene Ther, 2000, 7:1121-1125.
  • 6Bertin R, Acquaviva C, Mirebeau D, et al. CDKN2A, CDKN2B, and MTAP gene dosage permits precise characterization of mono- and bi-allelic 9p21 deletions in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer, 2003,37:44-57.
  • 7Wadhwa R, Sugihara T, Hasan MK, et al. A major functional difference between the mouse and human ARF tumor suppressor proteins.J Biol Chem, 2002, 277:36665-36670.
  • 8Lagresle C, Gardie B, Eyquem S, et al. Transgenic expression of the p16(INK4a) cyclin-dependent kinase inhibitor leads to enhanced apoptosis and differentiation arrest of CD4-CD8- immature thymocytes. J Immunol, 2002,168: 2325-2331.
  • 9David-Pfeuty T, Nouvian-Dooghe Y. Human p14( Arf): an exquisite sensor of morphological changes and of short-lived perturbations in cell cycle and in nucleolar function. Oncogene,2002,21:6779-6790.
  • 10刘建香,苏旭.重组质粒p-Egr-p16的构建及在SMMC-7721细胞中的辐射诱导表达[J].中华放射医学与防护杂志,2003,23(6):438-440. 被引量:1

二级参考文献20

  • 1李修义,傅海青,刘树铮.低剂量全身照射增强荷瘤小鼠局部大剂量照射的抑瘤作用[J].白求恩医科大学学报,1995,21(6):559-562. 被引量:21
  • 2Takai Y, Yamada S, Nemoto K, et al. Antitumor effect of low dose total (or half) body irradiation and changes of the functional subset peripherial blood lymphocytes in nonHodgkin's lymphoma patients after TBI (or HB1). The international conference on low dose irradiation and brological defence mechanism [M]. Japan: Kyoto, 1992, 113-116.
  • 3Sukhatme YP, Kartha S, Toback FG, et al. A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens [J]. Oncogen Res, 1987, 1: 343-355.
  • 4Tsai-Morris CH. Cao X, Sukhatme YP. 5' flanking sequence and genomic structure of Egr-1, a murine mitogen inducible zinc finger encoding gene [J]. Nucleic Acids Res, 1988, 16:8835-8846.
  • 5Datta R, Taneja N, Sukhatme YP,et al. Reactive oxygen intermediates target CC (A+T) 6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation [J]. Proc Natl Acad Sci USA, 1993,90 : 2419-2922.
  • 6Datta R, Rubin E, Sukhatme YP, et al. Ionizing radiation activates transcription of the Egr-1 gene via CArG elements [J].Proc Natl Acad Sci USA, 1992, 89: 10149-10153.
  • 7Kobayshi M, Fitz L, Ryan M. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biological effects on human lymphocytes [J]. J Exp Med, 1989, 170:827 845.
  • 8Wilkinson VL, Warrier RR, Rruitt TP. Characterization of anti-mouse IL-12 monoclonal antibodies and measuremen of mouse IL-12 byELISA [J]. J ImmunolMethod, 1996. 189:15-24.
  • 9Staba MJ, Maucer HJ, Kufe DW, et al. Adenoviral TNF-alpha gene therapy and radiation damage tumor vasculature in a human malignant xenograft [J]. Gene Ther, 1998, 5 (3): 293-300.
  • 10MaucerHJ, HannaNN, StabaMJ, et al. Radiation-inducible gene therapy [J]. Life Sci, 1999, 322: 225-228.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部