期刊文献+

基于小波神经网络的管道腐蚀缺陷定量识别研究 被引量:1

Quantitative Study of Pipeline Corrosion Defects Based on Wavelet-neural Network
下载PDF
导出
摘要 漏磁检测是目前广泛采用的油气管道检测方法,通过漏磁检测仪获得腐蚀缺陷漏磁场切向分量的漏磁场信号,提取与腐蚀缺陷外形长、宽、深有关的漏磁场信号波形特征量,结合小波分析和神经网络的优势形成小波神经网络,分析设计了小波神经网络的结构,给出了网络训练算法,利用网络的非线性逼近性能,对腐蚀缺陷外形进行定量评价,给出预测评价曲线,试验验证方法有效可行。 At present, magnetic flux leakage test is widely used for oil gas pipeline defect detection. The tangential component of magnetic flux leakage testing signal around corrosion defect is detected by magnetic detector. Some features of magnetic flux leakage signals are extracted to evaluate and calculate the length, width and depth of defects. The wavelet neural network is a combination of wavelet analysis and neural network. The architecture of the wavelet neural network was designed, and then training algorithm was obtained. According to the non-linear property of wavelet-neural network, the quantitative shape assessment and predicted curve of corrosion defect can be given out. The method is reliable according to experimental verification.
作者 蒋奇
出处 《钢铁》 CAS CSCD 北大核心 2005年第10期48-51,86,共5页 Iron and Steel
关键词 管道 漏磁场 小波神经网络 评价 pipeline magnetic flux leakage wavelet neural network assessment
  • 相关文献

参考文献3

  • 1Mandayam S, Lord W, U pda L, et al. Wavelet-based Permeability Compensation Technique for Characterizing Magnetic Flux Leakage Images[J]. NDTE Int., 1997,30(5):297-303.
  • 2Broomhead DS, Lowe D. Muhivariable Functional Interpolation and Adaptive Networks[J]. Complex Sys.,1988,2: 321-355.
  • 3Mandayam S, Upda L, Upda S, et al. lnvariance Transformations for Magnetic Flux Leakage Signals[J]. IEEE Transactions on Magnetics, 1996,32(3):1577-1580.

同被引文献26

  • 1宋小春,黄松岭,赵伟,康宜华.水冷壁管壁厚主磁通超声波融合检测方法[J].中国机械工程,2006,17(10):1079-1081. 被引量:2
  • 2杨理践,马凤铭,高松巍.基于神经网络及数据融合的管道缺陷定量识别[J].无损检测,2006,28(6):281-284. 被引量:8
  • 3崔伟,黄松岭,赵伟.基于RBF网络的漏磁检测缺陷定量分析方法[J].清华大学学报(自然科学版),2006,46(7):1216-1218. 被引量:13
  • 4Chen Xudong,Ni Guangzheng,Yang Shiyou.An Improved Tabu Algorithm applied to global optimization of inverse problems in electromagnetics[J].IEEETransaction on Magnetics,2002,38(2):1069-1072.
  • 5Mcfall G,Miracky R.A noise-tolerant solution to the magnetostatic inverse problem for nondestructive evaluation[J].J Appl Phys,1993,174(1):2036-2045.
  • 6Hwang K,Mandayam S,Udpa S S.Characterization of gas pipeline inspection signals using wavelet basis function neural networks[J].NDT & E International,2000,33(5):531-545.
  • 7Lunin V,Barat V,Podobedov D.Neural networkbased crack parameterization using wavelet preprocessing MFL signal[J].In Review of Progress in Qnantitative Nondestructive Evaluation,2001,20(6):641.
  • 8Chen Z,Preda G.Reconstruction of crack shapes from the MFLT signals by using a rapid forward solver and an optimization approach[J].IEEE Transactions on Magnetics,2002,38(2):1025-1028.
  • 9Zhang W,Guo J T,Huang S L.Application of neural network in metal loss evaluation for gas conducting pipelines[J].Advances in Neural Networks,2006,(3):1254-1260.
  • 10Christen R,Bergamini A.Automatic flaw detection in NDE signals using a panel of neural networks[J].NDT & E International,2006,39(7):547-553.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部