期刊文献+

Burg算法在基于AR模型多普勒血流信号时频分析中的应用 被引量:2

Application of Burg Algorithm in Time-frequency Analysis of Doppler Blood Flow Signal Based on AR Modeling
下载PDF
导出
摘要 多普勒超声血流信号是一个非平稳的高斯随机过程,其时频分布与血流的速度及其变化有密切的关系。由于假设信号在一定时间间隔内是平稳的,实际上难以获得同时具有较好的时间、频率分辨率的超声多普勒时频分布。一种估计多普勒超声血流信号时频分布的方法是基于Levinson-Durbin算法的自回归(AR)模型法。但用该算法估计出的参数的误差随时间间隔的缩短而增大。Burg提出一种递推算法,不需要计算自相关,而是用使前向与后向预测误差能量之和最小的方法求出模型的参数。我们将用两种算法估计出的多普勒时频分布及理论的时频分布进行比较,发现用Burg算法估计出的多普勒时频分布比用Levinson-Durbin递推算法估计出的多普勒时频分布更接近理论的时频分布,尤其是频率带宽性能得到了明显的改善。 The Doppler blood flow signal is inherently a nonstationary Gaussian random process whose time-frequency representation associates with the time-varying velocity of blood flow and its variations. With the assumption that the signal being analyzed is stationary during a short time interval, we can not get Doppler time-frequency representations with satisfactory time and frequency resolution. AR modeling based on Levinson-Durbin algorithm has been used to generate time-frequency representations of Doppler blood flow signals. But the errors of the parameters computed by the algorithm will be aggrandized by the shortening of the time interval. Burg has advanced an algorithm, which computes the parameters by making the sum of forward and backward forecasting errors minimum. In the paper, time-frequency representations computed by Burg and Levinson-Durbin algorithm were compared with the theoretical representation. We found that the time-frequency representations computed by Burg algorithm are more similar to the theoretical representation, especially in frequency band.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第3期481-485,共5页 Journal of Biomedical Engineering
基金 云南省自然科学基金资助项目(2002c002z) 省院省校合作项目
关键词 Burg算法 AR模型 多普勒血流信号 时频分析 血流速度 Burg algorithm Doppler Time-frequency representation AR modeling Levinson- Durbin algorithm
  • 相关文献

参考文献12

  • 1Evans DH, Me Dicken WN, Skidmore R, et al, Doppler ultrasound. Chiehester:John Wiley& Sons, 1989; 200-223.
  • 2Guo ZY, Durand LG, Allard L, et al. Cardiac Doppler blood flow signal analysis, Part 11: The time-frequency distribution by using autoregressive modeling. Med Biol Eng Comput,1993; 31,3:242.
  • 3Vaitkus P J, Cobbold RSC, Johnston KW, A comparison study and assessment of Doppler ultrasound spectral estimation techniques, Part II: Methods and results. Ultrasound Med Bio1,1988' 14, 8:673.
  • 4Nuttall AH. Spectral analysis of a unlvariate process with bad data points, via Maximum Entropy and Linear predictive techniques. Tech. Rep. TR-5303, Naval Underwater Systems Center, New London, Corm, 1976:76.
  • 5Mo LYL, Cobbold RSC. A nonstationary signal simulation model for continuous wave and pulsed Doppler ultrasound.IEEE Trans Ultrason Ferroelec Freq Contr, 1989;36:522.
  • 6Kay SM. Modern spectral estimation, theory and application.Prentice-Hall,1988; 183-186.
  • 7Ulrych TJ, Ooe M. Autoregresslve and mixed autoregressivemoving average models and spectral, in nonlinear methods of spectral analysis. Springer-Verlag, New York, 1979:124.
  • 8Akaike H. A new look at the statistical model identification.IEEE Trans Autom Control, 1974; 19 : 716.
  • 9Kashyap RL, Inconsistency of the AIC rule for estimating the order of autoregressive models. IEEE Trans Autom Control,1980;25:996.
  • 10Rissanen J. Modeling by shortest data description.Automatica, 1978; 14:465.

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部