期刊文献+

聚丙烯延胡索酸酯/β-磷酸三钙合成和对骨髓基质细胞生物学行为的影响

Synthesis of poly(propylene fumarate)/β-TCP and culture with bone marrow stromal cells
原文传递
导出
摘要 目的制备聚丙烯延胡索酸酯/β-磷酸三钙(PPF/β-TCP)复合材料.在体外检测PPF/β-TCP材料对骨髓基质细胞(BMSC)的黏附、增殖、成骨能力的影响,对PPF/β-TCP生物材料的性能进行评价.方法二步反应法合成PPF单体,加入β-TCP后进行交联.骨髓基质细胞在PPF/β-TCP材料上培养2、4、6、8、10、12 h后胰蛋白酶消化,检测黏附细胞数.BMSC和PPF/β-TCP材料复合培养,用MTT法检测BMSC的增殖,绘制生长曲线,检测碱性磷酸酶的含量.结果BMSC在PPF/β-TCP材料上黏附,2~8 h细胞数增加,到10 h黏附数达最高,约为68%.BMSC在PPF/β-TCP材料上生长,第4、5天为对数生长期,第7、8天进入平台期.BMSC种植在PPF/β-TCP后上表达ALP并不断增加.结论 PPF/β-TCP生物降解材料对BMSC的黏附、增殖、成骨功能无不良影响,是一种有前途的生物降解材料. Objective To prepare the biomaterial poly( propylene fumarate)/β-TCP (PPF/β-TCP) and in vitro test its effect on adhesion, proliferation and osteogenic potential of bone marrow stroreal cells (BMSC) so as to evaluate the characteristics of PPF/β-TCP. Methods PPF was synthesized and crosslinked after adding β-TCP. BMSC were cultured on PPF/β-TCP and collected within 12 h every two h to calculate the adhesion number. The proliferation of BMSC on PPF/β-TCP was tested by MTT method, growth curve was drawn, and the activity of alkaline phophatase was assayed. Results BMSC could adhere to PPF/β-TCP, the number of cells increased within 10 h and reached to 68% at 10 h. BM-SC could proliferate on PPF/β-TCP, entered the log phase on the day 4 and day 5, reached plateau phase on the day 7 and day 8. BMSC could express ALP on PPF/β-TCP. Conclusion PPF/β-TCP has no adverse effect on BMSC and is a promising biomaterial.
出处 《中华实验外科杂志》 CAS CSCD 北大核心 2005年第11期1383-1384,共2页 Chinese Journal of Experimental Surgery
  • 相关文献

参考文献1

二级参考文献12

  • 1[1]Behravesh E, Yasko AW, Engel PS et al. Synthetic biodegradable polymers for orthopaedic applications. Clin Orthop. 1999 Oct;(367Suppl): S 118-29.
  • 2[2]Peter SJ, Kim P, Yasko AW, Yaszemski MJ et al. Crosslinking characteristics of an injectable poly(propylene fumarate)/betatricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J Biomed Mater Res. 1999 Mar 5;44(3):314-21.
  • 3[3]Lewandrowski KU, Hile DD, Thompson BM et al. Quantitative measures of osteoinductivity of a porous poly(propylene fumarate)bone graft extender. Tissue Eng. 2003 Feb;9(1):85-93.
  • 4[4]Hedberg EL, Tang A, Crowther RS et al. Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites. J Control Release. 2002 Dec 5;84(3): 137-50.
  • 5[5]Payne RG, McGonigle JS, Yaszemski MJ et al. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials. 2002 Nov;23(22):4373-80.
  • 6[6]Vehof JW, Fisher JP, Dean D et al. Bone formation in transforming growth factor beta-1-coated porous poly(propylene fumarate)scaffolds. J Biomed Mater Res. 2002 May;60(2):241-51.
  • 7[7]Fisher JP, Vehof JW, Dean D et al. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res. 2002 Mar 5;59(3):547-56.
  • 8[8]Lewandrowski KU, Gresser JD, Wise DL et al. Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid) bone cement. Biomaterials. 2000 Feb;21 (3):293-8.
  • 9[9]Yaszemski MJ, Payne RG, Hayes WC et al. In vitro degradation of a poly(propylene fumarate)-based composite material. Biomaterials.1996 Nov; 17(22):2127-30.
  • 10[10]Wolfe MS, Dean D, Chen JE et al. In vitro degradation and fracture toughness of multilayered porous poly(propylene fumarate)/beta-tricalcium phosphate scaffolds. J Biomed Mater Res.2002 Jul;61(1):159-64.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部