期刊文献+

多预测子融合实时连续语音识别输出词正误判别

Combination of Multiple Predictors for Correct-Incorrect Classification of Output Words in Real Time Continuous Speech Recognition
下载PDF
导出
摘要 本文在采用堆栈译码词网重估输出作为识别最终输出的连续语音识别实时解码条件下,利用决策树方法将多个预测子融合,对识别输出词进行正确和错误的判别。本文首先构造了词后验概率、词长、相邻词的后验概率、词的声学和语言得分等共13个预测子,然后利用决策树方法,通过选择不同的预测子组合方式和适当的决策树建树参数,筛选出预测子的最佳组合,建立优化的决策树进行输出词的正误判别。实验结果表明:利用局域词图计算的词后验概率与词长、相邻词的后验概率等几种实时预测子融合后,对识别输出词的正误判别能力得到提高,并且在实时性和分类效果两个方面优于n-best输出的相应结果,相对于基线系统,则分类错误率下降41.4%。实验结果也表明本文提出的相邻词的后验概率是相对重要的预测子。 Under the decoding strategy of using stack decoding to rescore the word trellis to generate final output, this paper uses decision tree to combine multiple predictors to identify each of recognition output words as correct or incorrect. A series of predictors are constructed, including word posterior probability, word length, word posterior probabihty of neighboring words, 13 in all. Optimal combination of predictors is found and best decision tree is constructed for correct-incorrect classification of output words by testing different combination of predictors and choosing appropriate tree parameters. The experimental results show that the combination of local word posterior probabilities (LWPP) with some of other predictors constructed by this paper, including mainly word length and LWPPs of neighboring words, can give a significant improvement in classifieation performance, and is better in time consumption and quality than the corresponding results from n-best list. Compared with baseline system, the classification error rate getsan improvement of 41.4%. The experimental results also show that posterior probabilities of neighboring words proposed by this paper are among relatively important predictors.
出处 《中文信息学报》 CSCD 北大核心 2005年第6期84-91,共8页 Journal of Chinese Information Processing
基金 国家重点基础研究发展规划资助项目(973)(G1998030505)
关键词 计算机应用 中文信息处理 连续语音识别 预测子 决策树 computer application Chinese information processing continuous speech recognition predictor decision tree
  • 相关文献

参考文献9

  • 1S J. Young. Detecting misrecognitions and out-of-vocabulary words [A]. In: Proc. ICASSP [C], 1994, vol. 2, 21 -24.
  • 2F. Wessel, K. Macherey, R. Schl'uter. Using word probabilities as confidence measures [ A ]. In: Proc. ICASSP[C], 1998, vol. 1, 225- 228.
  • 3李红莲,何伟,袁保宗.一种文本相似度及其在语音识别中的应用[J].中文信息学报,2003,17(1):60-64. 被引量:10
  • 4F. Wessel. Word Posterior Probabilities for Large Vocabulary Continuous Speech Recognition[D]. Aachen University, Germany, January 2002, 85.
  • 5R. Mosur. Efficient Algorithms for Speech Recognition [D]. Carnegie Mellon University, May 1996.
  • 6A.Lee, T.Kawabara, K.Shikano. Julius - an open source real-time large vocabulary recognition engine [A] .In:Proc. Eurospeech [C], 2001, 1691 - 1694.
  • 7A. Lee, K. Shikano, T. Kawahara, Real-Time Word Confidence Scoring using Local Posterior probabifities on Tree Trellis Search[A] .In: Proc. ICASSP[C], 2004, 793- 796.
  • 8F. K. Soong, E.-F. Huang. A tree-trellis based fast search for finding the N best sentence hypotheses in continuous speech recognition [A] .In: Proc. ICASSP[C], 1991, vol. 1, 705 - 708.
  • 9J. R. Quinlan. C4.5: Programs for Machine Learning [M]. San Mateo, California: Morgan Kaufmann, 1996.

二级参考文献1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部