摘要
从调和级数中把分母含有任何偶数数字的所有项剔除后剩下的子级数,由美国 R.Honsberger 教授证明是小于7的。本文采用数学归纳法、概率、极限逼近法和级数折项组合技巧证明其和界于2.948与3.466之间。同时得到另一个分母只含偶数数字的子级数的和在1.84840与2.083之间。
In this thesis,it is proved that the two subseries of harmonic series are both convergent by means of principles of induction,probability and limit approximati- on.It is also calculated that the sum of one of the subseries is in the interval (1.84840,2.083),and the other is in the interval (2.948,3.466).
出处
《重庆邮电学院学报(自然科学版)》
1989年第1期73-78,共6页
Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition)