期刊文献+

P_(3,4m)的优美性

The Gracefulness of P_(3,4m)
下载PDF
导出
摘要 设u、v是两个固定顶点,用b条内部互不相交且长度均为a的道路连接u、v所得到的图用Pa,b表示。Kathiresan证实P2r,2m-1(r,m均为任意正整数)是优美的,且猜想:除了(a,b)=(2r+1,4s+2)外,所有的Pa,b都是优美的。杨元生已证实P2r+1,2m-1是优美的。本文证明P3,4m是优美图,从而当a=3时Kathiresan猜想成立。 Let u and v be two fixed vertices. Connect u and v by b internally disjoint paths of length a , the resulting graphs denoted by Pa,b. Kathiresan showed that P2r.2m-1 is graceful and conjectured that Pa,b is graceful except for ( a, b) = (2r + 1,4s + 2) .Yang showed that P2r+1,2m-1 are graceful, In this paper , P3,4m is proved to be graceful. So we prove the conjecture for a = 3.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2005年第5期126-128,共3页 Journal of National University of Defense Technology
关键词 优美图 顶点标号 边标号 graceful graph vertex labeling edge labeling
  • 相关文献

参考文献6

  • 1Ringel G.Problem 25 in Theory of Graphs and Its Application [J] .Proc.Symposium Smolenice,1963:162.
  • 2Rosa A.On certain Valuations of the Vertices of a Graph [M] .Theory of Graphs, Proc.Internet,Sympos, Rome.1966:349-355.
  • 3Golomb S W.How to Number a Graph [M] .Graph Theory and Computing,Academic Press,New York,1972:23-37.
  • 4Gallian J A.A Dynamic Survey of Graph Labeling [J] .The Electronic Journal of Combinatorics,2000,6.
  • 5Kathiesan K M.Two Classes of Graceful Graphs [J] .Ars Combinatoria,2000,55:129-132.
  • 6杨元生,容青,徐喜荣.一类优美图[J].Journal of Mathematical Research and Exposition,2004,24(3):520-524. 被引量:14

二级参考文献5

  • 1RINGEL G. Problem 25 in theory of graphs and its application [J]. Proc. Symposium Smolenice,1963, 162.
  • 2ROSA A. On certain Valuations of the Vertices of a Graph [M]. Theory of Graphs, Proc. Internat,Sympos, Rome. , 1966, 349-355.
  • 3GOLOMB S W. How to Number a Graph [M]. Graph Theory and Computing, Academic Press, New York, 1972, 23-37.
  • 4GALLIAN J A. A dynamic survery of graph labeling [J]. The electronic journal of combinatorics,2000, 6.
  • 5KATHIESAN K M. Two classes of graceful graphs [J]. Ars Combinatoria, 2000, 55.. 129-132.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部