期刊文献+

不可压缩球体的空穴和分叉 被引量:1

Cavitation and bifurcation in an incompressible sphere
下载PDF
导出
摘要 利用Y.C.Gao给出的一类应变能函数,分析了不可压缩球体受静载荷作用时空穴的产生和增长问题,给出了存在分叉解的条件,确定了载荷与空穴半径的函数关系,以及本构参数对临界力的影响,讨论了空穴情形的应力分布以及预先存在微空穴的增长.结果表明本构参数n<1.5时,产生空穴,临界力随着n的变大而变大. Based on a strain energy function proposed by Y.C. Gao, an incompressible solid sphere under boundary dead loading was analyzed. The condition under which a bifurcated solution exists was examined. The relationship between dead load and radius and the influence of constitutive constants on the critical load were derived. The stress distribution was given and the growth of pre-existing micro-void was discussed. The results indicate that when the constitutive parameter is less than 1.5, bifurcation initiates. The critical pressure increases with the increasing.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2005年第5期624-627,共4页 Journal of Harbin Engineering University
关键词 不可压缩 空穴 分叉 应变能函数 incompressibility void nucleation and growth bifurcation strain energy function
  • 相关文献

参考文献9

  • 1GENT A N,LINDLEY P B. Internal rupture of bonded rubber cylinders in tension[A]. Proc R Soc Lond[C]. [s.l.],1959.
  • 2BALL J M. Discontinuous equilibrium solutions and cavitations in nonlinear elasticity[J]. Phil Trans Roy Soc Lond A, 1982, 306 (3):557-610.
  • 3STUART C A. Estimating the critical radius for radially symmetric cavitation[J]. Quart Appl Math, 1993, 51:251-263.
  • 4HORGAN C O, ABEYARATNE R. A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void[J]. Journal of Elasticity, 1986, 16: 189-200.
  • 5HAUGHTON D M. Cavitation in compressible elastic membrane[J]. Journal of Engineering Science, 1990, 28:163-168.
  • 6STEIGMANN D J. Cavitation in elastic membrane-an example[J]. Journal of Elasticity, 1992, 28:277-287.
  • 7HOU H S, ABEYARATNE R. Cavitation in elastic and elastic-plastic solids[J]. J Mech Phys Solids,1992,40:715-722.
  • 8GAO Y C, GAO Tianjie. Mechanical behavior of two kinds of rubber materials[J].Int J Solids Structures,1999, 36: 5545-5558.
  • 9HORGAN C O, POLIGNONE D A. Cavitation in nonlinearly elastic solids : a review[J]. Appl Mech Rev, 1995, 48 (8):471-485.

同被引文献10

  • 1GENT A N,LINDLEY P B. Internal rupture of bonded rubber cylinders in tension[J]. Proc R Soc Lond, 1958, A249: 195-205.
  • 2BALL J M. Discontinuous equilibrium solutions and cavitations in nonlinear elasticity[J]. Phil Trans Roy Lond, 1982, 306(3): 557-610.
  • 3KNOWLES J K. Large amplitude oscillations of a tube of incompressible elastic material [J]. Q Appl Math, 1960, 18(1): 71-77.
  • 4KNOWLES J K. On a class of oscillations in the finite deformation theory of elasticity[J]. J Appl Mech, 1962, 29(2):283-286.
  • 5GUO Z H, SOLECKI R. Free and forced finite amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material[J]. Arch Mech Stos, 1963, 15(2): 427-433.
  • 6CALDERER C. The dynamical behavior of nonlinear elastic spherical shells[J]. J of Elasitcity, 1983, 13(1): 17-42.
  • 7CHOU-WANG M S, HORGAN C O. Cavitaiton in non- linear elastodynarnic for neo-Hookean materials[J]. Int J of Engng Sci, 1989, 27(8):967-973.
  • 8GAO Y C, GAO Tianjie. Mechanical behavior of two kinds of rubber materials[J]. Int J Solid Structures, 1999, 36(36): 5545 5558.
  • 9任九生,程昌钧.DYNAMICAL FORMATION OF CAVITY IN TRANSVERSELY ISOTROPIC HYPER-ELASTIC SPHERES[J].Acta Mechanica Sinica,2003,19(4):320-323. 被引量:13
  • 10宁建国,李伟,郝玖锋,刘海燕,黄筑平.平面应变条件下孔洞化不稳定性问题研究[J].固体力学学报,2003,24(3):359-363. 被引量:6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部