摘要
本文基于对静态电压稳定问题模型的推导,发现整个数学模型与直角坐标的潮流方程有相似之处。在非线性方程简化的过程中,通过计及二阶非线性减少近似,从而使收敛性获得改善。在其迭代过程中,利用最优化技术引入最优乘子,加速收敛,从而减少迭代次数,减少解的盘旋,改善病态系统的特性。文中提出了利用最优乘子和二阶非线性特征确定静态电压稳定临界状态的方法。
This paper introduces a method to computethe critical state of static-state voltage stability via the application of optimal multiple factor and load now equationsretaining second order nonlinearity. Based on the derivationof mathematical formulation of static-state voltage stabilityin electric power systems, there are similar in mathematicalformulation between static-state voltage stability and loadflow equation in rectangular coordinates. On the simplifiedprocess, its convergence can be improved via retaining second order term. On the process of iteration, its convergencecan be accelerated and the numbers of iteration can be decreased by the use of optimal multiple factor in optimizationtechnique. The zigzagging phenomenon in solution can be reduced, and some specific properties will be improved in illconditioned power systems.
出处
《电网技术》
EI
CSCD
北大核心
1996年第1期20-23,共4页
Power System Technology
关键词
电力系统
电压稳定
非线性方程
power systems, voltage stability, criticalstate, optimization technique, optimal multiple factor, loadflow equations, second order terms.