摘要
设v1,v2,v3,…,vn是图G的n个顶点,若(d(v1),d(v2),d(v3),…,d(vn))T是图G邻接矩阵A的特征向量,则称G是调和图,其中d(vi)表示顶点vi的度.1-4圈的调和图已经确定,本文确定了所有的3-调和的5-圈调和图.
A graph G on nvertice v1,v2,…,v, is said to be harmonic if (d(v1),d(v2),d(v3),…,d(vn))^T is an eigenvector of its adjacency matrix A,where d(vi) is the degree of the vertex vi,i= 1,2,3…,n. Earlier all unicyclic, bicyclic,tricyclic and tetracyclic harmonic graphs were determined. In this paper,we determined all three-harmonic pentracyclic graphs,
出处
《数学理论与应用》
2005年第3期56-59,共4页
Mathematical Theory and Applications
基金
湖南省教育厅科学研究资助项目(03B019)