期刊文献+

S^3到CP^4中的等变弱Lagrangian极小浸入 被引量:3

NON-CONSTANT CURVATURE EQUIVARIANT WEAKLY LAGRANGIAN MINIMAL S^3 IN CP^4
下载PDF
导出
摘要 研究3维球面S3到复射影空间CP4中的非常数截面曲率的等变弱Lagrangian极小浸入。 It is proved that an equivariant weakly lagrangian minimal 3-sphere S^3 with non-constant sectional cutvature immersed in the comples projective space CP^4 is contained in a totally geometricreal projective space RP^4 of CP^4 and is an isoparametric hypersurface of RP^4 with 3 distinct principle curvatures. The inverse image of S^3 under the Hopf fibration is the minimal isoparametric hypetsurface in S^3 with 3 distinct principle curvatures.
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2005年第5期409-415,共7页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10261006) 教育部全国优秀博士论文作者专项资金资助项目(200217) 江西自然科学基金资助项目(0211025)
关键词 复射影空间 等变 弱Lagrangian 极小浸入 complex projective space epuivariant weak langrangian minimal submanifold
  • 相关文献

参考文献5

  • 1Chen B Y.Riemannian Geometry of Lagrangian Submanifolds[J].Taiwan Residents J Math,2001(4):1~35.
  • 2J.Bolton J,Jensen G R,Rigoli M,et al.On Conformal Minimal Immersions of S2 Into CP″[J].Math Ann,1988(279):599~620.
  • 3Chen B Y,Dillen F,Verstraelen L.An Exotic Totally Real Minimal Immersion of S3 in CP″ and its Characterization[J].Proc Royal Soc Edinburgh Ser A,Math,1996(126):153~165.
  • 4Li Z Q.Minimal S3 with Constant Curvature in CPn[J].J London Math Soc,2003(68):223~240.
  • 5Jenson G R,Liao R.Families of Flat Minimal Torin in CPn[J].J Diff Geom,1995(42):113~132.

同被引文献13

  • 1Zhen Qi LI Yong Qian TAO.Equivariant Lagrangian Minimal S^3 in CP^3[J].Acta Mathematica Sinica,English Series,2006,22(4):1215-1220. 被引量:3
  • 2艾小梅,黎镇琦.S^3到CP^3中的等变极小浸入[J].南昌大学学报(理科版),2007,31(3):214-218. 被引量:2
  • 3Chen B. Y. Riemannian Geometry of Lagrangian Submanifolds [J]. Taiwan Residents J. Math. 2001, 4: 1-35.
  • 4Li Z. Minimal S^3 with constant curvature in CPn [J]. J. London Math. Soc. 2003, 68(2): 223-240.
  • 5Li Z., Tao Y. Equivariant Lagrangian minimal S^3 in CP^3 [J]. Acta Math. Sinica. 2006, 22(4): 1197-1214.
  • 6Bolton J,Jensen G R,Rigoli M,et al,On Conformal Minimal Immersion of S2into CP[J].Math.Ann.,1988,279:599-620.
  • 7Chen B Y.Riemannian Geometry of Lagrangian Submanifolds[J].Taiwan Residents J.Math,2001,4:1-35.
  • 8Li Z.Minimal S3with constant curvature in CPn[J].London Math.Soc.,2003,68(2):223-240.
  • 9Li Z,Huang A,Constant curved minimal CR3-spheres in CP n[J].J.Aust.Math.Soc.,2005,79:1-10.
  • 10Li Z,Ouyang C.Rigidity theorem of CR3-manifolds with constant curvature immersed minimally in CPn[C].Abstract of Short Communications and Poster Sessions,Beijing:Higher Education Press,2002.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部